Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(3=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)
Ta lại có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)
Gọi \(T=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
Áp dụng Bất đẳng thức Cauchy Schwarz dạng engel ta có :
\(T=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=\frac{1^2}{1+x}+\frac{1^2}{1+y}+\frac{1^2}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}\)
\(< =>T=\frac{9}{3+7}=\frac{9}{10}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{7}{3}\)
Vậy \(Min_T=\frac{9}{10}\)khi \(x=y=z=\frac{7}{3}\)
hóng cách khác :))
Mình làm như thế này nè:
Áp dụng BĐT AM - GM ta dễ có:
\(\frac{1}{x+1}+\frac{9\left(x+1\right)}{100}\ge2\sqrt{\frac{1}{x+1}\cdot\frac{9\left(x+1\right)}{100}}=\frac{3}{5}\)
Tương tự:\(\frac{1}{y+1}+\frac{9\left(y+1\right)}{100}\ge\frac{3}{5};\frac{1}{z+1}+\frac{9\left(z+1\right)}{100}\ge\frac{3}{5}\)
Cộng lại:
\(T+\frac{9\left(x+y+z\right)+27}{100}\ge\frac{9}{5}\Leftrightarrow T\ge\frac{9}{10}\)
Đẳng thức xảy ra tại \(x=y=z=\frac{7}{3}\)
AP DUNG BDT CAUCHY-SCHWAR : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))
...Cauchy-Schwarz:
\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)
Giải tiếp t cái dấu = :v
\(P+3=\frac{xy}{1+x+y}+1+\frac{yz}{1+y+z}+1+\frac{xz}{1+x+z}+1\)
\(\frac{xy}{1+x+y}+1=\frac{\left(x+1\right)\left(y+1\right)}{1+x+y}\)
\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(\frac{1}{\left(z+1\right)\left(x+y+1\right)}+\frac{1}{\left(y+1\right)\left(x+z+1\right)}+\frac{1}{\left(x+1\right)\left(y+z+1\right)}\right)\)
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
dòng cuối cùng sai, sửa :
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
\(P+3\ge\left(3xyz+xy+xz+yz\right)\left(\frac{9}{2\left(3xyz+xy+xz+yz\right)}\right)=\frac{9}{2}\)
\(P\ge\frac{3}{2}\)
dấu "=" xảy ra <=> x=y=z=\(\frac{1+\sqrt{3}}{2}\)
\(P=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
Áp dụng Bđt Cauchy-schwarz dạng engel ta có:
\(P\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)
Dấu = khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{7}\\y=\frac{2}{7}\\z=\frac{1}{7}\end{cases}}\)
Vậy...
Cách khác không dùng Cauchy Schwarz
Ta cần chứng minh \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge\frac{49}{16}\)
\(\Leftrightarrow P'=\frac{1}{x}+\frac{4}{y}+\frac{16}{z}\ge49\)
Áp dụng BĐT AM - GM ta có:
\(\frac{1}{x}+49x\ge2\sqrt{\frac{1}{x}\cdot49}=14\)
\(\frac{4}{y}+49y\ge2\sqrt{\frac{4}{y}\cdot49y}=28\)
\(\frac{16}{z}+49z\ge2\sqrt{\frac{16}{z}\cdot49z}=56\)
\(\Rightarrow P'+49\left(x+y+z\right)\ge98\)
\(\Rightarrow P'\ge49\)
mik cần gấp gấm cảm ơn trước :))
▄︻̷̿┻̿═━一 ============