K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có Xét hiệu\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)

Vì x-1,x,x+1 là 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3

Mà (2,3)=1

\(\Rightarrow\left(x-1\right)x\left(x+1\right)⋮6\)

Lập luận tương tự,ta được:\(\hept{\begin{cases}\left(y-1\right)y\left(y+1\right)⋮6\\\left(z-1\right)z\left(z+1\right)⋮6\end{cases}}\)

\(\Rightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)

\(\Rightarrow\left(x^3+y^3+z^3\right)-\left(x+y+z\right)⋮6\)

Mà \(x+y+z⋮6\)

\(\Rightarrow x^3+y^3+z^3⋮6\left(ĐPCM\right)\)

\(x^3+y^3+z^3\)

=> \(\left(x+y+z\right)\)\(\left(x+y+z\right)\).\(\left(x+y+z\right)\)

Mà x , y , z chia hết cho 6

=> \(x^3+y^3+z^3\)chia hết cho 6

26 tháng 4 2017

bn xem lại điều kiện 

J
26 tháng 4 2017

cái này tôi nháp nhiều lần rồi, với lại đây là đề thi hsg mà, k sai đc đâu

\(\left(x+y+z\right)^3-x^3-y^3-z^3=0\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3=0\)

=>3(x+y)(y+z)(x+z)=0

=>(x+y)(y+z)(x+z)=0

\(\left(x^{11}+y^{11}\right)\left(y^7+z^7\right)\left(x^{2017}+z^{2017}\right)\)

\(=\left(x+y\right)\cdot A\cdot\left(y+z\right)\cdot B\cdot\left(x+z\right)\cdot C\)

=0

AH
Akai Haruma
Giáo viên
8 tháng 7 2024

Lời giải:

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$

Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
 lẻ 1 số chẵn, 3 số chẵn

Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$

Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn

$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.

$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$

Vậy $(x+y)(y+z)(x+z)\vdots 2$

$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$

Mà $x+y+z\vdots 6$

$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$

21 tháng 10 2018

\(x+y+z=6\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2zx=36\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=24\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)

Mà \(x+y+z=6\)\(\Rightarrow\)\(x=y=z=\frac{6}{3}=2\)

Vậy \(x=y=z=2\)

Chúc bạn học tốt ~ 

21 tháng 10 2018

ĐK: x + y + z = 6; \(x^2+y^2+z^2=12\)

Áp dụng BĐT Bunhiacopxki cho hai bộ số (1;1;1) và (x;y;z).Ta có:

\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

Thay \(x+y+z=6\) và ta có:

\(3\left(x^2+y^2+z^2\right)\ge36\Leftrightarrow x^2+y^2+z^2\ge12\) (tmđk)

Dấu "=" xảy ra khi \(x=y=z=\frac{6}{3}=2\) (*)

Từ (*) suy ra  x=y=z=2

10 tháng 8 2021

\(x^3+y^3+z^3+x+y+z\ge2\sqrt{x^3.x}+2\sqrt{y^3.y}+2\sqrt{z^3.z}\)(BĐT Cô si)

\(VT\ge2\sqrt{x^4}+2\sqrt{y^4}+2\sqrt{z^4}\)

\(VT\ge2x^2+2y^2+2z^2=2\left(x^2+y^2+z^2\right)=6\)

dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2+y^2+z^2=3\\x^3=x;y^3=y;z^3=z\end{cases}< =>x=y=z=1}\)

\(x^3+y^3+z^3+x+y+z\ge6< =>ĐPCM\)

10 tháng 8 2021

còn cách khác nè :p

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : 

\(x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\Rightarrow x^3+y^3+z^3+x+y+z\ge\frac{9}{x+y+z}+\left(x+y+z\right)\ge2\sqrt{\frac{9}{x+y+z}\cdot\left(x+y+z\right)}=6\)( AM-GM )

=> đpcm . Dấu "=" xảy ra <=> x = y = z = 1

5 tháng 6 2019

x3 + y3 = 2 ( z3 + t3 )

\(\Rightarrow\)x3 + y3 + z3 + t3 = 3 ( z3 + t3 )   \(⋮\)

Áp dụng bài toán : n \(\in\)Z thì n3 - n \(⋮\)3

Ta có : ( x3 - x ) + ( y3 - y ) + ( z3 - z ) + ( t3 - t ) \(⋮\)

hay ( x3 + y3 + z3 + t3 ) - ( x + y + z + t ) \(⋮\)3

Mà x3 + y3 + z3 + t3 \(⋮\)3 nên x + y + z + t \(⋮\)3

5 tháng 6 2019

thank you

27 tháng 2 2018

x^3+y^3 = 2.(z^3+t^3)

<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3

Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )

Tương tự : y^3-y , z^3-z  và t^3-t đều chia hết cho 3

=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3

Mà x^3+y^3+z^3+t^3 chia hết cho 3

=> x+y+z+t chia hết cho 3

Tk mk nha

28 tháng 2 2018

cảm ơn bạn nhé