K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2018

Có : 1 = (x+y+z)^2 = x^2+y^2+z^2+2.(xy+yz+zx)

Mà x^2+y^2+z^2 = 1 => 2.(xy+yz+zx) = 0 <=> xy+yz+zx = 0 <=> (xy+yz+zx).(x+y+z) = 0

Lại có : 1 = (x+y+z)^3 = x^3+y^3+z^3+6xyz+3.(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2)

Mà x^3+y^3+z^3 = 1 => 6xyz+3.(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2) = 0

<=> 0 = 6xyz+3.[xy.(x+y)+yz.(y+z)+zx.(z+x)] = 6xyz+3.[xy.(1-z)+yz.(1-x)+zx.(1-y)] = 6xyz+3.(xy+yz+zx-3xyz)

= 6xyz+3.(0-3xyz) = 6xyz-9xyz

<=> -3xyz = 0

<=> xyz = 0

<=> xyz=(xy+yz+zx).(x+y+z)

<=> (xy+yz+zx).(x+y+z)-xyz = 0

<=> x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+2xyz = 0

<=> (x+y).(y+z).(z+x) = 0

<=> x+y=0 hoặc y+z=0 hoặc z+x=0

<=> x=-y hoặc y=-z hoặc z=-x

Đến đó bạn xét từng trường hợp mà cm nha

5 tháng 1 2018

a, x^3-y^2-y=1/3

=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0

=> x > 0 

Tương tự : y,z đều > 0

Tk mk nha

6 tháng 1 2018

ta có hpt

<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)

Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)

Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)

=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)

=>\(y\ge z\) (2)

với y>= z, từ pt(2) =>z>=x (3)

Từ 91),(2),(3)

=> x=y=z>0 (ĐPCM)

Với x=y=z>0, thay vào pt(1), Ta có 

\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)

<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)

<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V

^_^

21 tháng 7 2020

đây là bài bất IMO 2008 

Đặt \(a=\frac{x}{x-1};b=\frac{y}{y-1};c=\frac{z}{z-1}\)từ đó giả thiết trở thành 

\(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)Suy ra được : \(a+b+c-ab-bc-ca=1\)

Bài toán bây giờ trở thành chứng minh \(a^2+b^2+c^2\ge2\left(a+b+c-ab-bc-ca\right)-1\)

\(< =>\left(a+b+c-1\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

\(x^2+y^2+z^2=1\)\(\Leftrightarrow\)\(x^2=1-\left(y^2+z^2\right)\le1\)\(\Leftrightarrow\)\(-1\le x\le1\)\(\Leftrightarrow\)\(0\le1-x\le2\)

Tương tự, ta cũng có \(0\le1-y\le2;0\le1-z\le2\)

Lại có : \(x^2+y^2+z^2-x^3-y^3-z^3=1-1\)

\(\Leftrightarrow\)\(x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)

Mà \(1-x;1-y;1-z\ge0\) nên \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)\ge0\)

\(\Leftrightarrow\)\(x^2\left(1-x\right)=y^2\left(1-y\right)=z^2\left(1-z\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=y=z=0\left(loai\right)\\x=y=z=1\left(nhan\right)\end{cases}}\)

\(\Rightarrow\)\(P=xyz=1.1.1=1\)

...