K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

a) Áp dụng bài toán sau : a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\)

Ta có : \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.3.\frac{1}{xyz}=3\)

b)  x2 + y2 + z2 - xy - 3y - 2z + 4 = 0

4x2 + 4y2 + 4z2 - 4xy - 12y - 8z + 16 = 0

( 4x2 - 4xy + y2 ) + ( 3y2 - 12y + 12 ) + ( 4z2 - 8z + 4 ) = 0

( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0

Ta có : ( 2x - y )2 \(\ge\)0 ;  3 ( y - 2 )2 \(\ge\)0 ;  4 ( z - 1 )2 \(\ge\)0

Mà ( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0 

\(\Rightarrow\)\(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)

Vậy ....

21 tháng 12 2018

Ta có: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2=z^2\)

\(\Leftrightarrow x^2+y^2-z^2=-2xy\)

Chứng minh tương tự ta có:

\(x^2+z^2-y^2=-2xz\)

\(y^2+z^2-x^2=-2yz\)

\(\frac{xy}{x^2+y^2-z^2}+\frac{xz}{x^2+z^2-y^2}+\frac{yz}{y^2+z^2-x^2}\)

\(=\frac{xy}{-2xy}+\frac{xz}{-2xz}+\frac{yz}{-2yz}\)

\(=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\)

\(=-\frac{3}{2}\)

Vậy giá trị biểu thức là \(-\frac{3}{2}\)

6 tháng 1 2020

Bạn tham khảo tại đây:

Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)

\(\Rightarrow yz+zx+xy=0\)

Ta có : \(x^2+2yz=x^2+yz+yz\)

                              \(=x^2+yz-zx-xy\)

                              \(=x\left(x-z\right)-y\left(x-z\right)\)

                              \(=\left(x-y\right)\left(x-z\right)\)

Tương tự : \(y^2+2xz=y^2+xz+xz\)

                                    \(=y^2+xz-xy-yz\)

                                    \(=y\left(y-x\right)+z\left(x-y\right)\)

                                    \(=\left(x-y\right)\left(z-y\right)\)

                  \(z^2+2xy=\left(x-z\right)\left(y-z\right)\)

\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)  \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)