Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=y.z\Rightarrow\frac{x}{y}=\frac{z}{x}\)
tuong tự ta có\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)
=> dpcm
Lile nhá bạn
Ta có :
- x/3 = y/7 suy ra : x/6 = y/14
- y/2 = z/5 suy ra : y/14 = z/35
Và ................................
Kết quả là : x = 24 ; z = 140
ai tk mk mk tk lại
Ta có:
- x/3 = y/7 suy ra: x/6 = y/14
- y/2 = z/5 suy ra: y/14 = z/35
Và.......................................................
Nói chung kết quả: x=24
y=56
z=140
(a+b+c)^2=1= a^2+b^2+c^2+2(ab+bc+ac)=1
=> ab+bc+ac=0 (1)
x/a=y/b=z/c =>x=y.a/b , z=y.c/b (2)
Đặt A = x.y+y.z+z. thay x và z của (2) vào ta có
A =(y.a/b).y + y.(y.c/b) +(y.a/b).(y.c/b)
=y^2 (a/b+c/b +ac/b^2)
=y^2(ab+bc+ac)/b^2
Kết hợp (1) ta có A=0 đpcm
Ta có: a + b + c = 1
=>\(\left(a+b+c\right)^2=1\)
=>\(a^2+b^2+c^2+ab+bc+ca=1\)
=> ab + bc + ca = 0(Do a^2 + b^2 + c^2 = 1)
Ta có
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(Do a + b + c = 1)
\(\Rightarrow\hept{\begin{cases}x=a\left(x+y+z\right)\\y=b\left(x+y+z\right)\\z=c\left(x+y+z\right)\end{cases}}\)
Đặt x + y + z = k
=> \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\Rightarrow\hept{\begin{cases}xy=abk^2\\yz=bck^2\\xz=ack^2\end{cases}}\Rightarrow xy+yz+xz=k^2\left(ab+bc+ca\right)\)
mà ab + bc + ca = 0
=>xy + yz + xz = k^2.0 = 0(ĐPCM)
\(Gt\Rightarrow x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xz-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Do VT > 0 nên dấu "=" <=> x = y = z (DpcM)