K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

vì \(x^2+y^2+z^2=1\)

\(\Rightarrow0\le x;y;z\le1\)

\(2P=2\left(xy+xz+yz\right)+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2-2\left(x^2+y^2+z^2\right)-2\)

\(2P-2=-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\)

\(2P-2=\left(x^2-1\right)\left(y-z\right)^2+\left(y^2-1\right)\left(x-z\right)^2+\left(z^2-1\right)\left(x-y\right)^2\le0\)

\(2P-2\le0\)

\(2P\le2\)

\(P\le1\)

GTLN P là 1 khi x=y=z=\(\frac{\sqrt{3}}{3}\)

9 tháng 8 2020

tth_new_dep_trai_lai_lang_solo_SOS_Ji_Chen_tuoi_tom nhờ mình đăng hộ nha!

4 tháng 10 2019

ai làm giúp mk vs ạ

4 tháng 10 2019

cái dề bài câu b : P= là ở trên í ạ

8 tháng 10 2019

Thiếu đk: x,y,z là số thực dương

Có ct tổng quát: \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=> \(3.9\ge\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

=> \(\left\{{}\begin{matrix}0< x+y+z\le\sqrt{27}=3\sqrt{3}\\0< xy+yz+xz\le9\\xy+yz+zx\le x+y+z\end{matrix}\right.\)

=> \(x+y+z-\left(xy+yz+xz\right)\le3\sqrt{3}-9\)

<=>\(P\le3\sqrt{3}-9\)

Dấu "=" xảy ra <=> x=y=z=\(\sqrt{3}\)

P/s: không chắc bài đúng

8 tháng 10 2019

không thiếu đk ha gì ak bạn ơi. Không có điều kiện làm vẫn được mà.

ta có:

\(F^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\)

\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)=1+2.1=3\)

\(\Rightarrow F\ge\sqrt{3}\)

Vậy \(Min_F=\sqrt{3}\)khi \(x=y=z=\frac{\sqrt{3}}{3}\)

18 tháng 7 2017

cho mình hỏi từ \(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge x^2+y^2+z^2\)tại sao lại ra được như thế này vậy ạ

2 tháng 2 2019

Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)

Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:

\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)

\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)

\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.

Dấu "=" xảy ra khi x=y=z=1.

15 tháng 10 2017

Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)

\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)

Áp dụng bđt AM - GM ta có :

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)

\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)

\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)

Cộng vế với vế ta được :

\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 10 2017

Đức Hùng hình như áp dụng sai  ( ngược dấu ) BĐT Bunhiacopxki rồi

NM
17 tháng 5 2021

Ta có \(x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2=4\Rightarrow+xy+yz+zx=-7\)

vì \(x+y+z=2\Rightarrow z-1=1-x-y\Rightarrow\frac{1}{xy+z-1}=\frac{1}{xy+1-x-y}=\frac{1}{\left(x-1\right)\left(y-1\right)}. \)

Suy ra \(S=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}. \)

               \(\frac{z-1+x-1+y-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-\frac{1}{7}\)

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv