Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).
Vậy \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)
3) áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=>\(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=>\(3xyz=xy+yz+zx\)
mặt khác ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx=1\)
<=>\(1+2xy+2yz+2zx=1\)
<=> \(xy+yz+zx=0\)
do đó 3xyz=0<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
lần lượt thay x;y;z vào hệ ta có các cặp nghiệm (x;y;z)=(0;0;1),(0;1;0),(1;0;0)
do đó x^2017+y^2017+z^2017=1
Ta có:
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
\(\Leftrightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}=-2\)
\(\Leftrightarrow x^2z+x^2y+y^2x+y^2z+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)
Với \(x=-y\)
\(\Rightarrow x^3+y^3+z^3=1\)
\(\Rightarrow z=1\)
\(\Rightarrow P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{-x}+\frac{1}{1}=1\)
Tương tự cho các trường hợp còn lại.