\(\ge\) 0 thỏa x+y+z=1.

Chứng minh A=\(\sqrt{x+y}+\s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(A^2=\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{x+z}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)\)

\(\Rightarrow A^2\le3.2\left(x+y+z\right)=6\Rightarrow A\le\sqrt{6}\)(Vì A>0)

11 tháng 10 2018

c) theo bunhia ta có:

\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)

\(\Rightarrow VT\le\sqrt{6}\)

13 tháng 10 2018

bạn giải hẳn ra đc k?

10 tháng 10 2016

Áp dụng Bđt \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Ta có:

\(A^2\le6\left(x+y+z\right)=6\)

\(\Leftrightarrow A\le\sqrt{6}\)(Đpcm)

20 tháng 8 2017

1933 -109

25 tháng 10 2019

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=\frac{x^2}{\sqrt{x}}+\frac{y^2}{\sqrt{y}}+\frac{z^2}{\sqrt{z}}\)   (1)

Áp dụng BDT Cauchy-Schwarz: 

\(\left(1\right)\ge\frac{\left(x+y+z\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Ta lại có: \(x+y+z\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Thay vào ta có \(\left(1\right)\ge\frac{1}{\sqrt{3}}\)

Dấu = xảy ra khi x=y=z=1/3

25 tháng 10 2019

\(27x^3\sqrt{x}+27y^3\sqrt{y}+27z^3\sqrt{z}+\sqrt{x}+\sqrt{y}+\sqrt{z}\ge6\sqrt{3}\left(x^2+y^2+z^2\right)\)

Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)

Thay vào -> dpcm

31 tháng 7 2020

bài 2 tham khảo câu V đề thi vòng 1 trường THPT chuyên đại học sư phạm năm học 2013-2014

AH
Akai Haruma
Giáo viên
5 tháng 4 2018

Bài 1:

a) Bạn xem lại đề bài hộ mình.

b) Thực hiện biến đổi tương đương:

\((x+y+z)^2\leq 3(x^2+y^2+z^2)\)

\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)\leq 3(x^2+y^2+z^2)\)

\(\Leftrightarrow 2(xy+yz+xz)\leq 2(x^2+y^2+z^2)\)

\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)\geq 0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

BĐT trên luôn đúng do \(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-z)^2\geq 0\\ (z-x)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2018

Bài 2:
\(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)

\(\Rightarrow 2A=\sqrt{16x+8\sqrt{x}+4}+\sqrt{16y+8\sqrt{y}+4}+\sqrt{16z+8\sqrt{z}+4}\)

\(=\sqrt{18x-2(\sqrt{x}-2)^2+12}+\sqrt{18y-2(\sqrt{y}-2)^2+12}+\sqrt{18z-2(\sqrt{z}-1)^2+12}\)

\(\Rightarrow 2A\leq \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12})^2\leq [(18x+12)+(18y+12)+(18z+1)](1+1+1)\)

\(=3[18(x+y+z)+36]=756\)

\(\Rightarrow \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}\leq \sqrt{756}=6\sqrt{21}(2)\)

Từ \((1); (2)\Rightarrow 2A\leq 6\sqrt{21}\Rightarrow A\leq 3\sqrt{21}\)

Vậy \(A_{\max}=3\sqrt{21}\). Dấu bằng xảy ra khi \(x=y=z=4\)

24 tháng 10 2016

Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)

\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)

Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)

Theo đề bài ta có

\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)

Dấu = xảy ra khi x = y = z = 1

6 tháng 8 2019

Áp dụng cô si

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)

\("="\Leftrightarrow a=b=c=0\)

\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

18 tháng 10 2020

Sửa ĐK của c) : a, b, c > 0

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)

\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)

\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)

Cộng các vế tương ứng

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)

=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

=> đpcm

Đẳng thức xảy ra khi a = b = c

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)