Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài dễ mừ, có phải Croatia thật ko vậy :)) (viết đề bị nhầm, là x,y,z dương chứ :))
Áp dụng Cauchy-Schwarz dạng cộng mẫu số:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)
\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)
Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
Dấu bằng xảy ra khi và chỉ khi x=y=z, Xong! :))
Gọi cái biểu thức đó là P nha
Trước tiên chứng minh:
\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\left(\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right)=0\)
\(\Leftrightarrow\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\Leftrightarrow x-y+y-z+z-x=0\)( đúng )
Giờ ta quay lại bài toán ban đầu
Ta có:
\(\Leftrightarrow2P=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{x^2+y^2}{2\left(x+y\right)}+\frac{y^2+z^2}{2\left(y+z\right)}+\frac{z^2+x^2}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{4}\)
\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)
Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\). Vậy ta cần chứng minh
\(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)
\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)
\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)
Đặt \(a=\frac{z}{x+y}\ge1\), ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)
Dễ thấy BĐT này đúng. Vậy ta có đpcm
1) BĐT chứng minh ⇔∑(x2y2+y2x2)≥212⇔∑(x2y2+y2x2)≥212
Ta có x2y2+y2x2≥2x2y2+y2x2≥2
Ta sẽ đi chứng minh y2z2+z2y2+z2x2+x2z2≥172y2z2+z2y2+z2x2+x2z2≥172
Ta có y2z2+x2z2≥12(xz+yz)2y2z2+x2z2≥12(xz+yz)2
z2y2+z2x2≥12(4zx+y)2z2y2+z2x2≥12(4zx+y)2
Đặt a=zx+y≥1a=zx+y≥1
Ta sẽ chứng minh 12a2+8a2≥17212a2+8a2≥172
Dễ thấy bđt này đúng suy ra đpcm
\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)
Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)(dùng AM-GM giải quyết chỗ này)
Vậy ta cần chứng minh \(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)
\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)
\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)
Đặt \(a=\frac{z}{x+y}\ge1\),ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)
Dễ thấy BĐT này đúng.Vậy ta có đpcm
\(\frac{x^4}{y^2\left(x+z\right)}+\frac{x+z}{4}\ge2\sqrt{\frac{x^4}{y^2\left(x+z\right)}.\frac{x+z}{4}}=\frac{x^2}{y}\)
ttu ta sẽ có vt \(\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\frac{x+y+z}{2}\ge\frac{\left(x+y+z\right)^2}{x+y+z}-\frac{x+y+z}{2}=\frac{x+y+z}{2}\)