K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

Áp dụng BĐT : \(a^3+b^3\ge ab\left(a+b\right)\)

Ta có : \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+1\ge xy\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{1}{x^3+y^3+1}\le\dfrac{1}{xy\left(x+y+z\right)}\) (1)

C/m tương tự ta có : \(\dfrac{1}{y^3+z^3+1}\le\dfrac{1}{yz\left(x+y+z\right)}\) (2)

\(\dfrac{1}{x^3+z^3+1}\le\dfrac{1}{xz\left(x+y+z\right)}\) (3)

Cộng từng vế của (1) (2) (3) ta được :

\(A\le\dfrac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" xảy ra khi x = y = z = 1.

18 tháng 11 2017

do x,y,z là các số dương nên

\(x^2-xy+y^2\ge xy\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

tương tự ta cũng có : \(y^3+z^3\ge yz\left(y+z\right)\)

\(z^3+x^3\ge zx\left(z+x\right)\)

\(\Rightarrow\Sigma\dfrac{1}{x^3+y^3+xyz}\le\Sigma\dfrac{1}{xy\left(x+y+z\right)}=\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)

\(=\dfrac{1}{x+y+z}\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\left(đpcm\right)\)

31 tháng 8 2021

undefined

2 cái kìa còn lại làm tương tự rồi sau đó cộng lại với nhau sẽ ra 1 số tự nhiên nhé, dễ nên lười đánh nốt lắm :v

1 tháng 9 2021

cam ơn ah. kết quả bằng 3 ah.

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

AH
Akai Haruma
Giáo viên
6 tháng 1 2019

Bạn tham khảo tại link sau:

Câu hỏi của Thiều Khánh Vi - Toán lớp 9 | Học trực tuyến

16 tháng 11 2018

\(A=\Sigma\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\Sigma\dfrac{\sqrt{3\sqrt[3]{1.x^3.y^3}}}{xy}\) (bđt Cô-si cho 3 số)

=> \(A\ge\Sigma\dfrac{\sqrt{3xy}}{xy}=\Sigma\dfrac{\sqrt{3}}{\sqrt{xy}}\ge3\sqrt[3]{\dfrac{\sqrt{3}}{\sqrt{xy}}.\dfrac{\sqrt{3}}{\sqrt{yz}}.\dfrac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\) (bđt Cô-si cho 3 số)

Dấu "=" xảy ra <=> x = y = z = 1

16 tháng 11 2018

không hỉu cho lắm :(

tại sao lại chỉ xét 1 cái mí vâỵ :v

28 tháng 9 2021

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

NV
8 tháng 3 2019

Không mất tính tổng quát, giả sử \(x\le y\le z\)

Do \(xyz=1\)

\(x+y+z>1\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=xy+xz+yz\)

\(\Rightarrow x+y+z-\left(xy+xz+yz\right)>0\)

Xét:

\(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x-1\right)\left(yz-y-z+1\right)=xyz-xy-xz+x-yz+y+z-1\)

\(=x+y+z-\left(xy+xz+yz\right)>0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)>0\)

Do \(x\le y\le z\) ta chỉ có 2 trường hợp sau

TH1: \(\left\{{}\begin{matrix}x-1>0\\y-1>0\\z-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\y>1\\z>1\end{matrix}\right.\) \(\Rightarrow xyz>1\) (mâu thuẫn giả thiết)

TH2: \(\left\{{}\begin{matrix}x-1< 0\\y-1< 0\\z-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1\\y< 1\\z>1\end{matrix}\right.\)

Vậy trong 3 số có đúng 1 số lớn hơn 1

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)