K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 4 2019

\(0\le x;y;z\le2\Rightarrow\left\{{}\begin{matrix}xyz\ge0\\\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\end{matrix}\right.\)

\(\Rightarrow xyz+\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Leftrightarrow xyz+8-4x-4y-4z+2xy+2xz+2yz-xyz\ge0\)

\(\Leftrightarrow8-4\left(x+y+z\right)+2xy+2xz+2yz\ge0\)

\(\Leftrightarrow8-12+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)\ge0\)

\(\Leftrightarrow8-12+3^2\ge x^2+y^2+z^2\)

\(\Rightarrow x^2+y^2+z^2\le5\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và các hoán vị

19 tháng 5 2018

Áp dụng BĐT AM-GM ta có:

\(3\left(x+y+z\right)\le\frac{\left(x+y+z\right)^2+9}{2}\)

Ta tiếp tục qui tụ bài toán về BĐT khác:

\(\Rightarrow2xyz+2\left(x^2+y^2+z^2\right)+10\ge\left(x+y+z\right)^2+9\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\)

Sử dụng tiếp \(xyz\ge xz+yz-z\)ta cần phải chứng minh \(x^2+y^2+z^2+2\left(xz+yz-z\right)+1\ge2xy+2yz+2zx\)

Hay \(\left(x-y\right)^2+\left(z-1\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng nên ta có ĐPCM

Hoặc ta có thể áp dụng BĐT AM-GM bộ 3 số ta có: 

\(2xyz+1\ge3\sqrt[3]{x^2y^2z^2}=\frac{3xyz}{\sqrt[3]{3xyz}}\ge\frac{9xyz}{x+y+z}\)

Tiếp tục ta chứng minh: \(x^2+y^2+z^2+\frac{9}{x+y+z}\ge2\left(xy+yz+zx\right)\)

Đẳng thức Schur chỉ xảy ra khi \(x=y=z=1\)

NV
2 tháng 10 2019

\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\)

\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

Cộng vế với vế các BĐT trên:

\(3x^2+3y^2+3z^3+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{12-3}{3}=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

28 tháng 8 2017

em lp 6  a ơi

29 tháng 8 2017

2. Phân tích vế trái ta được:

\(2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

Phân tích vế phải ta được:

\(6.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

\(VT=VP\) nên \(VP-VT=0.\)

\(\Rightarrow4.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]=0\)

\(\Rightarrow2.\left\{2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\right\}=0\)

\(\Rightarrow2.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)

\(\Rightarrow x=y=z\) ( đpcm )

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick

29 tháng 1 2019

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\) (áp dụng svacxo)

Áp dụng bđt phụ \(a^2+b^2+c^2\ge ab+bc+ca\)

=>\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2+y^2+z^2=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\sqrt{\frac{1}{3}}}\)

31 tháng 8 2019

Cách 2:

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)

Tương tự hai bđt còn lại , cộng theo vế:

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge x^2+y^2+z^2=1\)(đpcm)

Cách 3:

\(\frac{x^3}{y}+\frac{x^3}{y}+y^2\ge3\sqrt[3]{\frac{x^3}{y}.\frac{x^3}{y}.y^2}=3x^2\)

Hay \(\frac{2x^3}{y}\ge3x^2-y^2\)

Tương tự 2 BĐT còn lại rồi cộng theo vế rồi chia cho 2 thu được đpcm

Cách 4:

\(\frac{x^3}{y}+\frac{x^3}{y}+xy+xy\ge4\sqrt[4]{x^8}=4x^2\)

Hay \(\frac{2x^3}{y}\ge4x^2-2xy\). Tương tự hai BĐT còn lại và cộng theo vế rồi làm nốt:v

P/s: Lời giải trên dùng kỹ thuật ghép cặp, một kĩ thuật rất gây ức chế cho em vì nhiều khi nghĩ không ra cần ghép với số nào:v