Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2. Phân tích vế trái ta được:
\(2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)
Phân tích vế phải ta được:
\(6.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)
Vì \(VT=VP\) nên \(VP-VT=0.\)
\(\Rightarrow4.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]=0\)
\(\Rightarrow2.\left\{2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\right\}=0\)
\(\Rightarrow2.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)
\(\Rightarrow x=y=z\) ( đpcm )

6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

ê hiếu t có 1 cách nhưng mà bị ngược dấu :)) có cần t làm ko :))))


Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1
Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3
vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz
Dấu = xảy ra khi x =1, y =2, z = 3
Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)