\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

18 tháng 3 2018

@ Mashiro Shiina

@Akai Haruma

@Nguyễn Thanh Hằng

@Đẹp Trai Không Bao Giờ Sai

15 tháng 6 2017

a, H = \(2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(\Leftrightarrow\) 2H = \(2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)

\(\Leftrightarrow\) 2H - H = \((2^{2011}-2^{2010}-2^{2009}-...-2^2-2)\) - \((2^{2010}-2^{2009}-2^{2008}-...-2-1)\)

\(\Leftrightarrow\) H = \(2^{2011}-2.2^{2010}+1\)

\(\Leftrightarrow\) H = \(2^{2011}-2^{2011}+1\)

\(\Leftrightarrow\) H = 1

Vậy H = 1

9 tháng 4 2017

a)H=22010-22009-...-2-1

=>2H=2(22010-22009-...-2-1)

=>2H=22011-22010-...-22-2

=>2H-H=(22011-22010-...-22-2)-(22010-22009-...-2-1)

=>H=22011-1

2 tháng 5 2018

Ta có :

\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}\\ \Leftrightarrow\dfrac{x+y+z}{z}=\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\left(cùngcộngthêm2\right)\)

TH1: \(x+y+z\ne0\)

\(\Rightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\\ =2\cdot2\cdot2=8\)

TH2: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)(*)

\(\Rightarrow P=\left(1+\dfrac{-\left(y+z\right)}{y}\right)\left(1+\dfrac{-\left(z+x\right)}{z}\right)\left(1+\dfrac{-\left(x+y\right)}{z}\right)\\ =\left(1-1-\dfrac{z}{y}\right)\left(1-1-\dfrac{x}{z}\right)\left(1-1-\dfrac{y}{z}\right)\\ =\left(-\dfrac{z}{y}\right)\left(-\dfrac{x}{z}\right)\left(-\dfrac{y}{z}\right)\\ =-1\)

Vậy P=8 hoặc P=-1

28 tháng 10 2017

\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{x-y+z}{y}\)

\(\Rightarrow\dfrac{x+y-z}{z}+2=\dfrac{y+z-x}{x}+2=\dfrac{x-y+z}{y}+2\)

\(\Rightarrow\dfrac{x+y-z}{z}+\dfrac{2z}{z}=\dfrac{y+z-x}{x}+\dfrac{2x}{x}=\dfrac{x-y+z}{y}+\dfrac{2y}{y}\)

\(\Rightarrow\dfrac{x+y-z+2z}{z}=\dfrac{y+z-x+2x}{x}=\dfrac{x-y+z+2y}{y}\)

\(\Rightarrow\dfrac{x+y+z}{z}=\dfrac{y+z+x}{x}=\dfrac{x+z+y}{y}\)

Điều này xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)

\(\circledast\)Với \(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Thay vào \(A\) ta có: \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{x}{z}\right)=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{z+x}{z}\right)=\dfrac{-z.-x.-y}{xyz}=\dfrac{-xyz}{xyz}=-1\)

\(\circledast\) Với \(x=y=z\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=1\\\dfrac{y}{z}=1\\\dfrac{x}{z}=1\end{matrix}\right.\)

Thay vào \(A\) ta có:

\(A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

3 tháng 6 2017

Áp dụng tích chất dãy tỉ số bằng nhau ta có :

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\left\{{}\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\)

\(\Rightarrow\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\dfrac{x+y}{y}.\dfrac{y+z}{z}.\dfrac{x+z}{x}=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=8\)

3 tháng 6 2017

Vào đây nhé: Câu hỏi của Vũ Ngọc Minh Anh - Toán lớp 7 | Học trực tuyến

5 tháng 11 2017

Từ \(\dfrac{x+y-z}{x}=\dfrac{y+z-x}{y}=\dfrac{z+x-y}{z}\)

=> \(1+\dfrac{y-z}{x}=1+\dfrac{z-x}{y}=1+\dfrac{x-y}{z}\)

=> \(\dfrac{y-z}{x}=\dfrac{z-x}{y}=\dfrac{x-y}{z}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{y-z}{x}=\dfrac{z-x}{y}=\dfrac{x-y}{z}=\dfrac{y-z+z-x+x-y}{x+y+z}=\dfrac{0}{x+y+z}=0\)

Ta có : \(\dfrac{y-z}{x}=0\)

=> y - z = 0 ; Vì x # 0 => y = z

\(\dfrac{z-x}{y}=0\)

=> z - x = 0 . Vì y # 0 => z = x

=> y = z = x

Ta có: A = \(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)

A = (1 + 1) (1 + 1) ( 1 + 1)

A = 2 . 2 . 2 = 8

9 tháng 3 2017

TH1: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(y+z=-x\)

\(x+z=-y\)

\(\Rightarrow M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\dfrac{-xyz}{8xyz}=\dfrac{-1}{8}\)

TH2: \(x+y+z\ne0\)

\(\Rightarrow2x+2y-z=3\)

\(\Rightarrow2x+2y=4z\)

\(\Rightarrow x+y=2z\)

\(x+z=2y\)

\(y+z=2x\)

\(\Rightarrow M=\dfrac{2z.2y.2x}{8xyz}=1\)

Vậy: \(M=\dfrac{-1}{8}\) hoặc \(1\)

9 tháng 3 2017

Ta có \(\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{2x+2y-z}{z}=\dfrac{2x+2z-y}{y}=\dfrac{2y+2z-x}{x}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x+2y-z}{z}=3\\\dfrac{2x+2z-y}{y}=3\\\dfrac{2y+2z-x}{x}=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+2y-z=3z\\2x+2z-y=3y\\2y+2z-x=3x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+2y=4z\\2x+2z=4y\\2y+2z=4x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=2z\\x+z=2y\\y+z=2x\end{matrix}\right.\)

Ta có \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}\)

\(\Rightarrow M=\dfrac{2x.2y.2z}{8xyz}=\dfrac{8xyz}{8xyz}=1\)

Vậy \(M=1\)