K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{x-y+z}{y}\)

\(\Rightarrow\dfrac{x+y-z}{z}+2=\dfrac{y+z-x}{x}+2=\dfrac{x-y+z}{y}+2\)

\(\Rightarrow\dfrac{x+y-z}{z}+\dfrac{2z}{z}=\dfrac{y+z-x}{x}+\dfrac{2x}{x}=\dfrac{x-y+z}{y}+\dfrac{2y}{y}\)

\(\Rightarrow\dfrac{x+y-z+2z}{z}=\dfrac{y+z-x+2x}{x}=\dfrac{x-y+z+2y}{y}\)

\(\Rightarrow\dfrac{x+y+z}{z}=\dfrac{y+z+x}{x}=\dfrac{x+z+y}{y}\)

Điều này xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)

\(\circledast\)Với \(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Thay vào \(A\) ta có: \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{x}{z}\right)=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{z+x}{z}\right)=\dfrac{-z.-x.-y}{xyz}=\dfrac{-xyz}{xyz}=-1\)

\(\circledast\) Với \(x=y=z\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=1\\\dfrac{y}{z}=1\\\dfrac{x}{z}=1\end{matrix}\right.\)

Thay vào \(A\) ta có:

\(A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

3 tháng 11 2021

\(\dfrac{x+y-2017z}{z}=\dfrac{y+z-2017x}{x}=\dfrac{z+x-2017y}{y}\)

<=> \(\dfrac{x+y}{z}-2017=\dfrac{z+y}{x}-2017=\dfrac{z+x}{y}-2017\)

<=> \(\dfrac{x+y}{z}=\dfrac{z+y}{x}=\dfrac{z+x}{y}\)

đặt x+y+z = t 

=> \(\dfrac{t-z}{z}=\dfrac{t-x}{x}=\dfrac{t-y}{y}< =>\dfrac{t}{z}-1=\dfrac{t}{x}-1=\dfrac{t}{y}-1\) \(< =>\dfrac{t}{z}=\dfrac{t}{y}=\dfrac{t}{x}\)

=> x=y=z 

ta lại có 

\(P=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{y}\right)\)

vì x=y=z  => P = \(\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

3 tháng 11 2021

gật gật

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

8 tháng 10 2021

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

(y + z - x)/x = (z + x - y)/y = (x + y - z)/z = 1

--> y + z - x = x; z + x - y = y; x + y - z = z

--> y + z = 2x; z + x = 2y; x + y = 2z

Ta có: 

B = (x + y)/y.(y + z)/z.(z + x)/x

= 2z/y.2x/z.2y/x = 8

5 tháng 11 2017

Từ \(\dfrac{x+y-z}{x}=\dfrac{y+z-x}{y}=\dfrac{z+x-y}{z}\)

=> \(1+\dfrac{y-z}{x}=1+\dfrac{z-x}{y}=1+\dfrac{x-y}{z}\)

=> \(\dfrac{y-z}{x}=\dfrac{z-x}{y}=\dfrac{x-y}{z}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{y-z}{x}=\dfrac{z-x}{y}=\dfrac{x-y}{z}=\dfrac{y-z+z-x+x-y}{x+y+z}=\dfrac{0}{x+y+z}=0\)

Ta có : \(\dfrac{y-z}{x}=0\)

=> y - z = 0 ; Vì x # 0 => y = z

\(\dfrac{z-x}{y}=0\)

=> z - x = 0 . Vì y # 0 => z = x

=> y = z = x

Ta có: A = \(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)

A = (1 + 1) (1 + 1) ( 1 + 1)

A = 2 . 2 . 2 = 8

1 tháng 1 2021

mong  mn help khocroi

1 tháng 1 2021

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{x+3y-z+y+3z-x+z+3x-y}{x+y+z}=\dfrac{3(x+y+z)-(x+y+z)}{x+y+z}=\dfrac{2(x+y+z)}{x+y+z}=2\)

\(\Rightarrow x=y=z=0\)

\(\Rightarrow \) P không xác định. (?)

3 tháng 6 2017

Áp dụng tích chất dãy tỉ số bằng nhau ta có :

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\left\{{}\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\)

\(\Rightarrow\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\dfrac{x+y}{y}.\dfrac{y+z}{z}.\dfrac{x+z}{x}=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=8\)

3 tháng 6 2017

Vào đây nhé: Câu hỏi của Vũ Ngọc Minh Anh - Toán lớp 7 | Học trực tuyến

2 tháng 5 2018

Ta có :

\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}\\ \Leftrightarrow\dfrac{x+y+z}{z}=\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\left(cùngcộngthêm2\right)\)

TH1: \(x+y+z\ne0\)

\(\Rightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\\ =2\cdot2\cdot2=8\)

TH2: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)(*)

\(\Rightarrow P=\left(1+\dfrac{-\left(y+z\right)}{y}\right)\left(1+\dfrac{-\left(z+x\right)}{z}\right)\left(1+\dfrac{-\left(x+y\right)}{z}\right)\\ =\left(1-1-\dfrac{z}{y}\right)\left(1-1-\dfrac{x}{z}\right)\left(1-1-\dfrac{y}{z}\right)\\ =\left(-\dfrac{z}{y}\right)\left(-\dfrac{x}{z}\right)\left(-\dfrac{y}{z}\right)\\ =-1\)

Vậy P=8 hoặc P=-1

12 tháng 5 2022

Ta có: \(x-y-z=0\)

\(\Rightarrow x-y=z\)

\(x-z=y\)

\(y+z=x\)

\(\Rightarrow B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)

\(=\dfrac{x-z}{x}.\dfrac{-\left(y-x\right)}{y}.\dfrac{z+y}{z}\)

\(=\dfrac{y}{x}.-\dfrac{z}{y}.\dfrac{z}{x}=-1\)

\(\Rightarrow B=-1\)

29 tháng 11 2023

\(P=\left(\dfrac{x+2y}{y}\right)\left(\dfrac{y+2z}{z}\right)\left(\dfrac{z+2x}{x}\right)\)

Ta có

\(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}=\)

\(=\dfrac{x+2y-z+y+2z-x+z+2x-y}{x+y+z}=\)

\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\dfrac{x+2y}{z}-1=\dfrac{y+2x}{x}-1=\dfrac{z+2x}{y}-1=2\)

\(\Rightarrow\dfrac{x+2y}{z}=\dfrac{y+2x}{x}=\dfrac{z+2x}{y}=3\)

\(\Rightarrow P=3.3.3=27\)