K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Ta có: \(\left(x+y\right)+z^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2\)

\(\Rightarrow xy+yz+xz=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\)

Hay \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{-1}{z}\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(-\dfrac{1}{z}\right)^3\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{3}{xy}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{y^3}=\dfrac{-1}{z^3}\)hay \(\dfrac{1}{x^3}-\dfrac{3}{xyz}+\dfrac{1}{y^3}=\dfrac{-1}{z^3}\)

\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

10 tháng 5 2017

\(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) \(\dfrac{\Rightarrow1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=a+b+c=0\)

cơ bản \(\left(a+b+c\right)=0\Rightarrow a^3+b^3+c^3=3abc\)

\(\Rightarrow x.y.z\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{1}{abc}.\left(a^3+b^3+c^3\right)=\dfrac{1}{abc}\left(3abc\right)=3=>dpcm\Leftrightarrow dccm\)

10 tháng 5 2017

Đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\), bài toán trở về thành dạng chứng minh:

Nếu a + b + c = 0 thì a3 + b3 + c3 = 3bc.

Câu hỏi tương tự: Câu hỏi của Dinh Nguyen Dan - Toán lớp 8 | Học trực tuyến

26 tháng 11 2022

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)

 

21 tháng 4 2018

Đầu tiên ta cm:\(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+\left(-a-b\right)^3=3abc\)

\(\Leftrightarrow a^3+b^3-a^3-3a^2b-3ab^2-b^3=3abc\)

\(\Leftrightarrow-3a^2b-3ab^2=3abc\)

\(\Leftrightarrow-3ab\left(a+b\right)=3abc\)

\(\Leftrightarrow-3ab\cdot\left(-c\right)=3abc\)(đúng)

Áp dụng:\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz\cdot\dfrac{3}{xyz}=3\left(đpcm\right)\)

6 tháng 10 2017

\(A=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x^2+2xy+y^2\right)-\left(xz+yz\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=0\)

<><><>

\(A=\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)

\(=\dfrac{x+y}{y}\times\dfrac{y+z}{z}\times\dfrac{z+x}{x}\)

\(=\dfrac{-z}{y}\times\dfrac{-x}{z}\times\dfrac{-y}{x}\)

\(=-1\)

<><><>

\(A=\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)

\(=\dfrac{1}{\left(y+z\right)^2-2yz-x^2}+\dfrac{1}{\left(x+z\right)^2-2xz-y^2}+\dfrac{1}{\left(x+y\right)^2-2xy-z^2}\)

\(=\dfrac{1}{\left(-x\right)^2-2yz-x^2}+\dfrac{1}{\left(-y\right)^2-2xz-y^2}+\dfrac{1}{\left(-z\right)^2-2xy-z^2}\)

\(=-\dfrac{1}{2}\left(\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xz}\right)\)

\(=-\dfrac{1}{2}\times\dfrac{x+y+z}{xyz}\)

\(=0\)

17 tháng 7 2018

Giả sử bài toán đã có đầu đủ giả thuyết cần thiết rồi. (Thiếu giả thuyết nhá bác).

\(x^3+y^3+z^3\ge\left(\dfrac{x+y}{2}\right)^3+\left(\dfrac{y+z}{2}\right)^3+\left(\dfrac{z+x}{2}\right)^3\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)-3\left(xy^2+xz^3+yx^2+yz^2+zx^2+zy^2\right)\ge0\)

Ta có bổ đề:

\(x^3+x^3+y^3\ge3yx^2\)

Thế vô thì bài toán được chứng minh.

17 tháng 7 2018

1 cách giải khác:

\(bdt\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(x+z\right)^3\)

\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge2\left(x^3+y^3+z^3\right)+xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(y+z\right)\left(y^2-yz+z^2\right)+3\left(x+z\right)\left(x^2-xz+z^2\right)\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow3\left(x+y\right)\left(x-y\right)^2+3\left(y+z\right)\left(y-z\right)^2+3\left(x+z\right)\left(x-z\right)^2=0\)

\("="\Leftrightarrow x=y=z\)