Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được
\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)
Ta phải chứng minh:
\(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)
\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
Mà \(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)
Theo C.B.S
\(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Phải chứng minh
\(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
\(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)
Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)
\(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
=> ĐPCM
Biến đổi tương đương là ok mà
Ta có; \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
<=> \(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}\ge0\)
<=> \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{xz}+x\right)\ge0\)
<=> \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{x}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
( Luôn đúng)
=> đpcm
Dấu = xảy ra <=> \(x=y=z\)
\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x=y=z=1
ta sử dụng bđt :\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)(dk mọi abcd)
cái này cm dễ thôi. bunhia nha
ĐĂT :\(A=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)
\(\Rightarrow A=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{y\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{z\sqrt{3}}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}\right)^2}\)
Áp dingj bđt trên ta được \(A\ge\sqrt{\left(x+\frac{y}{2}+y+\frac{z}{2}+z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}+\frac{y\sqrt{3}}{2}+\frac{z\sqrt{3}}{2}\right)^2}\)
\(\Rightarrow A\ge\sqrt{\frac{9}{4}\left(x+y+z\right)^2+\frac{3}{4}\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)\)(dpcm)
Dấu = xảy ra khi và chỉ khi x=y=z
c) theo bunhia ta có:
\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)
\(\Rightarrow VT\le\sqrt{6}\)
Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))
Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)
Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng từng vế của các BĐT trên,ta được:
\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
We have:
\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)
Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)
Consider:
\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)
\(\Rightarrow a+b+c\le\frac{3}{2}\)
Now we need to prove:
\(\Sigma_{cyc}\frac{a}{a+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)
\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)
Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)
Lời giải:
Đặt \((\frac{1}{x}; \frac{1}{y}; \frac{1}{z})=(a,b,c)\). Bài toán trở thành:
Cho $a,b,c>0$ thỏa mãn $a+b+c=1$. CMR:
\(\frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}(*)\)
----------------------------------
Do $a+b+c=1$ nên ta có:
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}=\sqrt{a(a+b+c)+bc}+\sqrt{b(a+b+c)}+\sqrt{c(a+b+c)+ab}\)
\(=\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}+\sqrt{(c+a)(c+b)}\)
Mà áp dụng BĐT Bunhiacopxky:
\(\sqrt{(a+b)(a+c)}+\sqrt{(b+c)(b+a)}+\sqrt{(c+a)(c+b)}\geq \sqrt{(a+\sqrt{bc})^2}+\sqrt{(b+\sqrt{ac})^2}+\sqrt{(c+\sqrt{ab})^2}\)
\(=a+\sqrt{bc}+b+\sqrt{ac}+c+\sqrt{ab}=a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Vậy:\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\geq 1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow \frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)
$(*)$ được cm. BĐT hoàn thành. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$ hay $x=y=z=3$
Theo bất đẳng thức Cô-Si cho ba số dương \(x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{x^2\cdot\sqrt{x}\cdot\sqrt{x}}=3x.\)
Vậy ta có \(x^2+2\sqrt{x}\ge3x.\) Tương tự \(y^2+2\sqrt{y}\ge3y,\) và \(z^2+2\sqrt{z}\ge3z.\) Cộng các bất đẳng thức lại ta được
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\) . Suy ra
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+zx.\) (ĐPCM)
Theo bất đẳng thức Cô-Si cho 3 số \(x^2+2\sqrt x=x^2+\sqrt x+\sqrt x\ge 3\sqrt[3]{x^2\sqrt x\sqrt x}=3x.\) Tương tự, ta cũng có \(y^2+2\sqrt y\ge3y,z^2+2\sqrt z\ge3z.\) Cộng lại ta được \(x^2+y^2+z^2+2\sqrt x+2\sqrt y+2\sqrt z\ge3(x+y+z)=(x+y+z)^2\). Từ đây khai triển bình phương vế phải sẽ được \(2(\sqrt x+\sqrt y+\sqrt z)\ge 2(xy+yz+zx).\) Do đó ta có điều phải chứng minh.