K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Ta có 
x^2/(1+y) + y^2/(1+z) + z^2/(1+x) >= 3 (căn bâc 3 của(x^2.y^2.z^2)/((1+x)(y+1)(z+1))) 
= 3 (căn bâc 3 của(1/(1+x)(y+1)(z+1)) 
có xyz=1 nên 
x<=1<=>x+1<=2<=>1/(X+1)>=1/2 tương tự 
1/(y+1)>=1/2 
1/(z+1)>=1/2 
nên 3 (căn bâc 3 của(1/(1+x)(y+1)(z+1))>=3(căn bâc 3 của(1/((1/2)^3)=3/2 => dpcm dấu= xay ra khi x=y=z=1

6 tháng 3 2018

Ví dụ nha bạn

4 tháng 3 2019

ko hiểu

5 tháng 11 2019

nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id

5 tháng 11 2019

Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> Đặt: x + y+z =t => \(t\ge3\)

\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)

\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)

\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)

\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)

"=" xảy ra <=> x = y = z =1

10 tháng 8 2016

z3 ak ? hỏi thử

10 tháng 8 2016

z2 , nhầm chút

28 tháng 3 2016

Dễ dàng chứng minh được với mọi  \(x,y>0\) thì ta luôn có:

\(x^3+y^3\ge xy\left(x+y\right)\)  \(\left(\text{*}\right)\)

Thật vậy, xét hiệu  \(x^3+y^3-xy\left(x+y\right)=x^3-x^2y+-xy^2+y^3=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)

\(x^3+y^3-xy\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)  (vì  \(\left(x-y\right)^2\ge0\)  với mọi  \(x,y\)  và  \(x+y>0\))

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x-y=0\)  \(\Leftrightarrow\)  \(x=y\)

Vậy,  bất đẳng thức \(\left(\text{*}\right)\)  luôn đúng với mọi  \(x,y>0\)

Do đó, từ  \(\left(\text{*}\right)\)  ta suy ra:

\(x^3+y^3+xyz\ge xy\left(x+y\right)+xyz\)  (do  \(x,y,z>0\))

\(\Leftrightarrow\)  \(x^3+y^3+xyz\ge xy\left(x+y+z\right)\)

\(\Leftrightarrow\)  \(x^3+y^3+1\ge xy\left(x+y+z\right)\)  (do  \(xyz=1\))

Khi đó, vì hai vế  của bđt trên cùng dấu nên ta lấy nghịch đảo hai vế và đổi chiều bất đẳng thức, tức là:

\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)   \(\left(1\right)\)

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{xyz}{xy\left(x+y+z\right)}\)  (do  \(xyz=1\))

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)

Hoàn toàn tương tự với vòng hoán vị  \(x\)  \(\rightarrow\)  \(y\)  \(\rightarrow\)  \(z\), ta cũng chứng minh được:

\(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)  \(\left(2\right)\)  và  \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)  \(\left(3\right)\)

Cộng từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=1\)

9 tháng 4 2015

Ta chứng minh bất đẳng thức sau:  Vơi x.y  >= 0 ta có \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (*)

Thật vậy: (*) <=>  \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\Leftrightarrow\frac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y.\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right).x\left(1+y^2\right)-\left(y-x\right).y\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right).\left(x\left(1+y^2\right)-y\left(1+x^2\right)\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right)\left(xy\left(y-x\right)-\left(y-x\right)\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

Luôn đúng vì: x; y > = 1 nên tích x.y > = 1 ....

Áp dụng (*) ta có: 

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\frac{1}{1+x^2}+\frac{1}{1+z^2}\ge\frac{2}{1+xz}\)

\(\frac{1}{1+z^2}+\frac{1}{1+y^2}\ge\frac{2}{1+yz}\)

=> \(2.\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\right)\ge2.\left(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{xz}\right)\ge2.\left(\frac{1}{1+xyz}+\frac{1}{1+xyz}+\frac{1}{xyz}\right)\)

Vì xy x; y ; z > = 1 nên x.y .z > = x.y ; y.z; z.x

=> \(\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\right)\ge\frac{3}{1+xyz}\)

 

 

 

 

 

6 tháng 4 2019

Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)

( điều này luôn đúng với mọi x ; y > 0 )

=> BĐT được c/m

Áp dụng vào bài toán , ta có :

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)

17 tháng 9 2017

Sửa đề : CMR : \(xyz\le\frac{1}{8}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\Rightarrow\frac{1}{z+1}\ge\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\frac{x}{x+1}+\frac{y}{y+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\left(1\right)\)(bđt AM - GM)

Tương tự ta cũng có : \(\hept{\begin{cases}\frac{1}{x+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(y+1\right)}}\left(2\right)\\\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\left(3\right)\end{cases}}\)

Nhân vế với vế của (1) ; (2) ; (3) laih ta được :

\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge8\sqrt{\frac{\left(xyz\right)^2}{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Rightarrow xyz\le\frac{1}{8}\)(đpcm)