\(\in\)R thoả mãn x+y=1

Timg GTNN của P=x^3+y^3+xy

Các bn lm giúp mik...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

Ta có:\(x+y=1\)\(\Rightarrow x=1-y\)

Khi đó: \(P=\left(1-y\right)^3+y^3+\left(1-y\right)y\)

               \(=1-3y+3y^2-y^3+y^3+y-y^2\)

                \(=2y^2-2y+1\)

                 \(=2\left(y^2-y+\frac{1}{4}\right)-\frac{1}{2}+1\)

                  \(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

30 tháng 7 2016

Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)

Suy ra \(P\ge10\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P = 10 khi x = y = 1/2

20 tháng 7 2017

Suy ra P≥10

Dấu "=" xảy ra khi và chỉ khi {

x+y=1
x=y

⇔x=y=12 

Vậy Min P = 10 khi x = y = 1/2

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

20 tháng 12 2016

Chứng minh \(x^2+y^2+z^2\ge xy+yz+xz\), Dấu "=" khi \(x=y=z\)

\(bdt\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)

Dấu "=" khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)\(\Leftrightarrow x=y=z\)

Áp dụng vào bài ta có:

\(A=x^2+y^2+z^2\ge xy+yz+xz=12\)

Dấu "=' xảy ra khi \(\begin{cases}x=y=z\\xy+yz+xz=12\end{cases}\)\(\Leftrightarrow x=y=z=\pm2\)

Vậy \(Min_A=12\) khi \(x=y=z=\pm2\)

21 tháng 12 2016

thanks bn na

 

Mời các bạn Xem lời giải mình thử nhé, chả hiểu sao mình tìm được maxB mà không phải minB, nếu sai chỗ nào nhớ góp ý cho mình với nhé!!!. Cảm ơn...

Có: \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)), mà \(x+y=1\Leftrightarrow x^3+y^3=x^2+y^2+xy\)

mà \(\left(x+y\right)^2=1^2=1\Rightarrow x^2+xy+y^2=1-xy\)\(\Rightarrow\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{1-xy}+\frac{1}{xy}=\frac{1}{xy-\left(xy\right)^2}\)

Lại có: \(x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+xy\ge3xy\Leftrightarrow1-xy\ge3xy\)\(\Rightarrow xy\le\frac{1}{4}\)( AD bđt Cosy),  để tính maxB \(\Rightarrow xy-\left(xy\right)^2min\), mà \(max\left(xy\right)=\frac{1}{4}\)\(\Rightarrow maxB=\frac{1}{\frac{1}{4}-\left(\frac{1}{4}\right)^2}=\frac{16}{3}\)

2 tháng 8 2020

@Nguyễn Phước Nhật Tôn HĐT sai rồi bạn ơi @@

12 tháng 5 2017

A=4 

tk đi mình gửi kq cho

12 tháng 5 2017

Ta có:

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Rightarrow A=xy\ge4\) 

Dấu = xảy ra khi x = y = 2