Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\)
Xét:
\(x^4+8xy^3-(x^2+2y^2)^2=8xy^3-4y^4-4x^2y^2\)
\(=-4y^2(x^2-2xy+y^2)=-4y^2(x-y)^2\leq 0\)
\(\Rightarrow x^4+8xy^3\leq (x^2+2y^2)^2\)
\(\Rightarrow \frac{x^2}{\sqrt{x^4+8xy^3}}\geq \frac{x^2}{x^2+2y^2}(*)\)
Mặt khác:
\(y^4+y(x+y)^3-(x^2+2y^2)^2=x^3y+3xy^3-2y^4-x^4-x^2y^2\)
\(=x^3(y-x)+3y^3(x-y)+y^4-x^2y^2\)
\(=x^3(y-x)+3y^3(x-y)+y^2(y-x)(y+x)\)
\(=(y-x)(x^3-2y^3+xy^2)\)
\(=(y-x)[(x-y)(x^2+xy+y^2)+y^2(x-y)]\)
\(=-(x-y)^2(x^2+xy+2y^2)\leq 0\)
\(\Rightarrow y^4+y(x+y)^3\leq (x^2+2y^2)^2\Rightarrow \frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\geq \frac{2y^2}{x^2+2y^2}(**)\)
Từ $(*); (**)\Rightarrow A\geq 1$
tìm Min của:
\(\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\) với x,y >0
\(T=\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\dfrac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\dfrac{2y^2}{\sqrt{y\left(y^3+\left(x+y\right)^3\right)}}\)
\(=\dfrac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\dfrac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\dfrac{2x^2}{2x^2+4y^2}+\dfrac{4y^2}{2y^2+\left(x+y\right)^2}\)\(\ge\dfrac{2x^2}{2x^2+4y^2}+\dfrac{4y^2}{4y^2+2x^2}\)
\(\ge\dfrac{2x^2+4y^2}{2x^2+4y^2}=1\)
Áp dụng bđt Cauchy-Schwarz:
\(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
\(=\dfrac{9}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
Áp dụng liên tiếp Bunyakovsky và AM-GM:
\(\left(\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left[x\left(y+2z\right)+y\left(z+2x\right)+z\left(x+2y\right)\right]\)
\(=3.3\left(xy+yz+xz\right)\)
Mà \(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=3\)
\(3.3\left(xy+yz+xz\right)\le3.3=9\)
\(\Leftrightarrow\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+z\sqrt{\left(x+2y\right)}\le\sqrt{9}=3\)
\(\Leftrightarrow A\ge\dfrac{9}{3}=3."="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
Đặt VT là T
Áp dụng AM-GM cho 3 số dương, ta có:
\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)
\(T\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)(đpcm)
\(P=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{.....}+\dfrac{x+2}{....}\)
\(=\dfrac{\sqrt{x^3}+2x+2\sqrt{x}-2+x+2}{.....}=\dfrac{\sqrt{x^3}+3x+2\sqrt{x}}{....}\)
\(=\dfrac{\sqrt{x}\left(x+3\sqrt{x}+2\right)}{....}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{....}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
P/S: Chú ý điều kiện khi rút gọn, tự tìm.