Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dat \(A=\frac{x^4+y^4}{x^4-y^4}-\frac{xy}{x^2-y^2}+\frac{x+y}{2\left(x-y\right)}\)
\(=\frac{2x^4+2y^4-2xy\left(x^2+y^2\right)+\left(x+y\right)^2\left(x^2+y^2\right)}{2x^4-2y^4}\)
\(=\frac{2x^4+2y^4+\left(x^2+y^2\right)\left[\left(x+y\right)^2-2xy\right]}{2x^4-2y^4}\)
\(=\frac{2x^4+2y^4+\left(x^2+y^2\right)^2}{2x^4-2y^4}\)
\(\Rightarrow A\ge\frac{2x^4+x^4}{2x^4}=\frac{3}{2}\)
\(\Rightarrow P=2017A\ge2017.\frac{3}{2}=\frac{6051}{2}\)
Dau '=' xay ra khi \(y=0\)
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
1) Biến đồi tương đương:
\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)
2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)
Xét vế 1 ta có: \(\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{y}\) \(=\frac{yz+yx}{xz}+\frac{z+x}{y}\)
\(=\frac{y^2z+y^2x+x^2z+xz^2}{xyz}\)nhóm hạng tử 1 với 4,2 với 3 trên tử ta được:
\(=\frac{z\left(y^2+xz\right)+x\left(y^2+xz\right)}{xyz}\)\(=\frac{\left(z+x\right)\left(y^2+xz\right)}{xyz}=\frac{z+x}{zx}\times\frac{y^2+xz}{y}\)(1);
Xét vế 2 ta có: \(=1+\frac{x}{z}+\frac{z}{x}+1=2+\frac{x}{z}+\frac{z}{x}\)nhân 2 đa thức với nhau:
\(=\frac{2xz}{xz}+\frac{x^2+z^2}{xz}\)\(=\frac{x^2+2xz+z^2}{xz}\)\(=\frac{\left(x+z\right)^2}{xz}=\frac{z+x}{xz}\times\frac{z+x}{1}\)(2)
Từ (1) và (2),ta có: vế 1 = vế 1; mà\(\frac{y^2+xz}{y}< y+\frac{xz}{y}< x+z\)
Suy ra điều phải chứng minh...
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\Leftrightarrow ab+bc+ca\ge\frac{3}{4}\)
áp dụng bđt holder ta có:
\(\left(a^3+b^3+c^3\right)\left(b^3+c^3+a^3\right)\left(1+1+1\right)\ge\left(ab+bc+ca\right)^3\)
\(\Leftrightarrow3\left(a^3+b^3+c^3\right)^2\ge\frac{27}{64}\)
\(\Leftrightarrow a^3+b^3+c^3\ge\frac{3}{8}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{8}\left(Q.E.D\right)\)
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+2xy+y^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)
Ta có vì : x,y > 0
và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Từ đề bài ta có:
\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)
Áp dụng đẳng thức Cô-si:
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Vậy....
đpcm.