K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{x^2+y^2+2xy}{xy}\)

\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)

\(=3+\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}\)

\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}>=2\cdot\sqrt{\dfrac{2xy}{x^2+y^2}\cdot\dfrac{x^2+y^2}{2xy}}=2\)

Dấu = xảy ra khi \(\dfrac{x^2+y^2}{2xy}=\dfrac{2xy}{x^2+y^2}\)

=>x=y

x^2+y^2>=2xy

=>\(\dfrac{x^2+y^2}{2xy}>=1\)

Dấu = xảy ra khi x=y

=>S>=6

Dấu = xảy ra khi x=y

13 tháng 5 2018

Với \(x=y=2\) thì \(Q=\dfrac{10}{3}\)

Ta sẽ chứng minh \(\dfrac{10}{3}\) là GTNN của \(Q\)

Thật vậy: \(\dfrac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\dfrac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}\ge\dfrac{10}{3}\)

\(\Leftrightarrow\dfrac{\left(x^2-xy-2x+y^2-2y+4\right)\left(3x^2+5xy+10x+3y^2+10y+12\right)}{3\left(x+y+2\right)^2\left(xy+2x+2y\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(\left(2x-y-2\right)^2+3\left(y-2\right)^2\right)\left(3x^2+5xy+10x+3y^2+10y+12\right)}{12\left(x+y+2\right)^2\left(xy+2x+2y\right)}\ge0\)

BĐT cuối đúng với \(x;y>0\)

Vậy \(Q_{Min}=\dfrac{10}{3}\Leftrightarrow x=y=2\)

18 tháng 5 2018

Quỳnh Hoa Lenka: Cách của mình đúng và được chấp nhận khi thi nhé :) cho nên mình cũng ko đòi hòi 1 lời giải nào hơn

NV
9 tháng 12 2018

\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Dâu "=" xảy ra khi \(x=y=z\)

20 tháng 8 2017

Áp dụng bất đẳng thức cô si ta có :\(x^2+y^2\ge2xy=2\)

\(\Rightarrow\left(x+y+1\right)\left(x^2+y^2\right)\ge2\left(x+y+1\right)=2\left(x+y\right)+2\)

\(\Rightarrow A\ge2\left(x+y\right)+2+\dfrac{4}{x+y}=\left(x+y+\dfrac{4}{x+y}\right)+\left(x+y\right)+2\)

Tiếp tục áp dụng bất đẳng thức cô si ta có :

\(A\ge2\sqrt{\left(x+y\right).\dfrac{4}{\left(x+y\right)}}+2\sqrt{xy}+2=4+2+2=8\)

Dấu "=" xảy ra khi :\(x=y=1\)

Vậy min của \(A=\left(x+y+1\right)\left(x^2+y^2\right)+\dfrac{4}{x+y}\) là 8 khi \(x=y=1\)

3 tháng 11 2018

\(Q=\dfrac{xyz}{z^3\left(x+y\right)}+\dfrac{xyz}{x^3\left(y+z\right)}+\dfrac{xyz}{y^3\left(x+z\right)}\)

\(=\dfrac{1}{z^3\left(x+y\right)}+\dfrac{1}{y^3\left(x+z\right)}+\dfrac{1}{x^3\left(y+z\right)}\) (vì xyz = 1)

\(=\dfrac{\left(\dfrac{1}{z}\right)^2}{z\left(x+y\right)}+\dfrac{\left(\dfrac{1}{y}\right)^2}{y\left(x+z\right)}+\dfrac{\left(\dfrac{1}{x}\right)^2}{x\left(y+z\right)}\)

Áp dụng BĐT cauchy schwarz với x,y,z > 0 ta có:

\(Q\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{xy+yz+xz}{2}\)Mặt khác theo BĐT cauchy với x;y;z>0 thì

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)

Vậy MinQ = \(\dfrac{3}{2}\Leftrightarrow x=y=z=1\)

13 tháng 5 2017

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Vì $xy+yz+xz=1$ nên:

\(x^2+1=x^2+xy+yz+xz=x(x+y)+z(x+y)=(x+z)(x+y)\)

\(y^2+1=y^2+xy+yz+xz=y(y+x)+z(y+x)=(y+z)(y+x)\)

\(z^2+1=z^2+xy+yz+xz=(z^2+xz)+(xy+yz)=z(z+x)+y(x+z)=(z+y)(z+x)\)

Do đó:

\(P=x\sqrt{\frac{(y+z)(y+x)(z+x)(z+y)}{(x+y)(x+z)}}+y\sqrt{\frac{(z+x)(z+y)(x+y)(x+z)}{(y+x)(y+z)}}+z\sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}\)

\(=x\sqrt{(y+z)^2}+y\sqrt{(x+z)^2}+z\sqrt{(x+y)^2}\)

\(=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)

7 tháng 1 2019

Lầy :v