Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)
Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)
Suy ra \(P\ge10\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min P = 10 khi x = y = 1/2
Suy ra P≥10
Dấu "=" xảy ra khi và chỉ khi {
x+y=1 |
x=y |
⇔x=y=12
Vậy Min P = 10 khi x = y = 1/2
\(A=\left(x+y+z+\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge2\sqrt{x.\frac{1}{4x}}+2\sqrt{y.\frac{1}{4y}}+2\sqrt{z.\frac{1}{4z}}+\frac{3}{4}\left(\frac{9}{x+y+z}\right)\)
\(\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 15/2 tại x = y = z = 1/2
Lời giải của em ạ :D
\(A=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\ge x+y+z+\frac{9}{x+y+z}\)
Đặt \(t=x+y+z\le\frac{3}{2}\)
Khi đó \(A=t+\frac{9}{t}=\left(t+\frac{9}{4t}\right)+\frac{27}{4t}\ge3+\frac{27}{4\cdot\frac{3}{2}}=\frac{15}{2}\)
Đẳng thức xảy ra tại x=y=z=1/2
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
xin nhá xin nhá =))
Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x=y=1/2
Vậy ...
ta có \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}=6\)
Mà \(\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{36}{x+2y+3z}\Rightarrow6\ge\frac{36}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)
MÀ \(y^2+1\ge2y;z^3+1+1\ge3z\)
=> A+3\(\ge\left(x+2y+3z\right)=6\) => A>=3
dấu = xảy ra <=> x=y=z
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\Rightarrow A\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
\(\Rightarrow A\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\)
\(\Rightarrow A\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2\)
\(\Rightarrow A\ge\frac{1}{2}\left[4\left(x+y\right)+\frac{4}{x+y}-3\right]^2\)
\(\Rightarrow A\ge\frac{1}{2}\left[2\sqrt{4\left(x+y\right).\frac{4}{x+y}-3}\right]^2\)
\(\Rightarrow A\ge\frac{1}{2}.5^2\)
\(\Rightarrow A\ge\frac{25}{2}\)
\(Min_A=\frac{25}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Áp dụng BĐT Cosi ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2y\left(1\right)\)
Tương tự ta cũng có: \(\frac{yz}{x}+\frac{xz}{y}\ge2z\left(2\right);\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng (1),(2),(3) vế theo vế ta được;
\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)\ge2\left(x+y+z\right)=2.2019=4038\)
\(\Rightarrow2P\ge4038\)
\(\Rightarrow P\ge2019\)
Dấu "=" xảy ra khi x = y = z = 673
Vậy Pmin = 2019 khi x = y = z = 673
mk không biết đề thêm đk \(x+y\le1\) làm j
Vì x,y>0 nên theo bđt Cô-Si:
\(P=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
=>P\(\ge\) 2
=>MinP=2
Dấu "=" xảy ra \(< =>x=y\)
Vậy..........