Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}-\frac{2}{1+xy}\ge0\)
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)( luôn đúng với \(x,y\ge1\))
Đpcm
https://olm.vn/hoi-dap/detail/238943826197.html . tương tự nha bạn đều ở phần giả sử tráo đổi 1 tí
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)
Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)
Ta cần c/m: \(A\ge\frac{3}{2}\)
Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)
Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)
\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)
\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)
\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)
Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)
Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:
\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)
Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ giùm
Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc Bunhia nên phải tách nó ra
Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)
\(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)
\(=x-\frac{\sqrt{z}}{2}\)
\(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))
Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)
\(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)
Cộng từng vế của các bđt trên lại được
\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)
\(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)
Từ điều kiện \(xy+yz+zx=3xyz\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow x+y+z\ge3\)
Quay trở lại với A
\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy .............
\(z\ge x+y\Rightarrow\frac{z}{x+y}\ge1\)
\(VT=\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{1}{z^2}\right)\)
\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right)\)
\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+8\left(\frac{z}{x+y}\right)^2+5\)
\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+\frac{1}{2}\left(\frac{z}{x+y}\right)^2+\frac{15}{2}\left(\frac{z}{x+y}\right)^2+5\)
\(VT\ge\frac{1}{2}.2\sqrt{\left(\frac{x+y}{z}\right)^2\left(\frac{z}{x+y}\right)^2}+\frac{15}{2}.1^2+5=\frac{27}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\)
a ) \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\frac{1}{2xy}+\frac{1}{x^2+y^2}\)
Ta có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\Rightarrow\frac{1}{2xy}\ge\frac{1}{\frac{1}{2}}=2\)
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{4}{2xy+x^2+y^2}=\frac{4}{\left(x+y\right)^2}=\frac{4}{1}=4\)
\(\Rightarrow P\ge2+4=6\) Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
b ) Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z>0\) ta được :
\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{2b+a}=\frac{1}{b+b+a}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{a}\right)\)
Cộng vế với vế ta được :
\(\frac{1}{2a+b}+\frac{1}{2b+a}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}\right)=\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}\right)\)
\(=\frac{1}{3a}+\frac{1}{3b}\) hay \(\frac{1}{3a}+\frac{1}{3b}\ge\frac{1}{2a+b}+\frac{1}{2b+a}\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Điều kiện x;y >=1Ta có: \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\Leftrightarrow\frac{2}{\left(1+x\right)^2}+\frac{2}{\left(1+y\right)^2}\ge\frac{2}{1+xy}\)
Ta có: \(\hept{\begin{cases}\left(1+x\right)^2\le\left(1^2+1^2\right)\left(x^2+1^2\right)=2\left(x^2+1\right)\\\left(1+y\right)^2\le2\left(y^2+1\right)\end{cases}}\)
Cần cm: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\frac{x^2+y^2+2}{\left(x^2+1\right)\left(y^2+1\right)}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(x^2+y^2+2\right)\left(1+xy\right)\ge2\left(x^2+1\right)\left(y^2+1\right)\)
\(\Leftrightarrow x^2+x^3y+y^2+y^3x+2+2xy\ge2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow x^3y+xy^3+2xy-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)=\left(xy-1\right)\left(x-y\right)^2\ge0\)(đúng)
"=" khi x=y=1
Đề sai thì phải ah.
Với \(x=1;y=2\) ta có:
\(S=\frac{1}{\left(1+1\right)^2}+\frac{1}{\left(1+2\right)^2}\ge\frac{1}{1+1\cdot2}\)
\(S=\frac{1}{4}+\frac{1}{9}\ge\frac{1}{3}\)
\(S=\frac{13}{36}\ge\frac{1}{3}\left(VL\right)\)