Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
\(1;\)Từ \(\left(a+b\right)=-7\Rightarrow\left(a+b\right)^3=-343\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-343\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-343\)
\(\Rightarrow a^3+b^3=-343-3.6.\left(-7\right)=-217\)
\(x^2+y^2=\left(x+y\right)^2-2xy=7^2-2.10=29\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3.10.7=133\)
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(=7.29.133=26999\)
áp dụng bđt Cô si ta có : \(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x^2y}=\frac{1}{2xy}\left(1\right)\)\(\)
\(y^4+x^2\ge2\sqrt{x^2y^4}=2xy^2\Rightarrow\frac{y}{x^2+y^4}\le\frac{y}{2xy^2}=\frac{1}{2xy}\left(2\right).\)
Cộng vế với vế của (1) và (2) ta có : \(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Vậy Max A = 1 khi x = y = 1
1.Theo đầu bài ta có:
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)
\(=\left(x^2+2x\right)+\left(y^2-2y\right)-2xy\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
Do x - y = 7 nên:
\(=7^2+2\cdot7\)
\(=49+14\)
\(=63\)
Bài 2. Câu 1:
Đặt A = x2 + y2. Khi đó:
\(A-2xy=x^2+y^2-2xy\)
\(\Rightarrow A-2xy=\left(x-y\right)^2\)
Do xy = 4 ; x - y = 3 nên:
\(\Rightarrow A-2\cdot4=3^2\)
\(\Rightarrow A-8=9\)
\(\Rightarrow A=17\)
Bài 1:Ta có x + y = 10 và xy=24 nên
(x+y) - 4xy = 102 - 4*24
hay x2 +y2 -2xy = 100-96
nên (x-y)2 =4
Từ đó ta có x - y = -2 hoặc x - y = 2
Nếu x - y =2 và x+y=10 thì ta được x = 6; y=4
Nếu x - y = -2 va x+y=10 thì ta được x = 4; y=6
Bài 2
Ta có: x2 + y2 - 2x + 4y + 5 = 0
hay x2 - 2x +1 + y2 +4y +4=0
nên (x-1)2 + (y+2)2 =0
mà (x-1)2 >=0; (y+2)2 >=0
Từ đó suy ra được x=1; y=-2
\(x^2+y^2=\left(x+y\right)^2-2xy=6\)
\(x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)=14\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=34\)
\(\Rightarrow x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=478\)
\(x2+y2=(x+y)2−2xy=6\)
\(x3+y3=(x+y)3−3xy.(x+y)=14\)
\(x4+y4=(x2+y2)2−2(xy)2=34\)
\(⇒x7+y7=(x3+y3)(x4+y4)−(xy)3(x+y)=478\)