\(\frac{x}{y^3-1}\)- \(\frac{y}{x^3-1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đăng lên làm j z

29 tháng 11 2016

(chứng minh rằng\) x y 3 −1 - Online Math

13 tháng 5 2020

Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)

(vì \(xy\ne0\Rightarrow x,y\ne0\))

\(\Rightarrow x-1\ne0;y-1\ne0\)

\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)

\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)

\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)

\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)

\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

11 tháng 11 2015

dùng hằng đẳng thúc cho mẫu rút gọn ta được 
\(\frac{1}{x^2+x+1}-\frac{1}{Y^2+y+1}+\frac{2\left(x+y\right)}{x^2y^2+3}\)=\(\frac{y^2+y+1-x^2-x-1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{\left(y-x\right)\left(y+x\right)+\left(y-x\right)}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{-2\left(x-y\right)}{xy\left(x+y\right)+\left(x+y\right)+1+x^2y^2+x^2+y^2+xy}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{-2\left(x-y\right)}{2xy+x^2+y^2+x^2y^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
 

19 tháng 4 2016

x=y-1 rồi thế từ từ vào

2 tháng 3 2020
https://i.imgur.com/qz7eYvL.jpg
2 tháng 3 2020

a.\(\frac{1-3x}{2}-\frac{x+3}{2}=\frac{1-3x-x-3}{2}=\frac{1-4x-3}{2}=\frac{-4x-2}{2}=\frac{-2\left(2x+1\right)}{2}=-2x-1\)

b. \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}=\frac{2\left(x^2-y^2\right)+2y^2}{x}=\frac{2x^2-2y^2+2y^2}{x}=2x\)

c. \(\frac{3x+1}{x+y}-\frac{2x-3}{x+y}=\frac{3x+1-2x+3}{x+y}=\frac{x+4}{x+y}\)

d. \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}=\frac{xy}{2x-y}-\frac{1-x^2}{2x-y}=\frac{xy-1+x^2}{2x-y}\)

e. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}=\frac{4x-1-7x+1}{3x^2y}=\frac{-3x}{3x^2y}=\frac{-1}{xy}\)