K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

Ta có:

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)

\(=\frac{x}{\sqrt{x^2+xy+yz+xz}}+\frac{y}{\sqrt{y^2+xy+yz+xz}}+\frac{z}{\sqrt{z^2+xy+yz+xz}}\)

\(=\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Cauchy:

\(\frac{x}{\sqrt{(x+y)(x+z)}}\leq \frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(\frac{y}{\sqrt{(y+z)(y+x)}}\leq \frac{1}{2}\left(\frac{y}{y+z}+\frac{y}{y+x}\right)\)

\(\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng theo vế:

\(\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

30 tháng 9 2017

Áp dụng BĐT AM-GM:

\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)

Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)

\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)

Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)

\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)

Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)

30 tháng 9 2017

cảm ơn bạn nhé

5 tháng 4 2018

\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )

TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)

cộng vế theo vế => đpcm

5 tháng 4 2018

Thì biết pass facebook thôi chứ cũng không biết có hack không

Bạn ấy đăng nhập bằng FACEBOOK mà

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

13 tháng 12 2018

Hình như thiếu điều kiện

3 tháng 10 2017

\(A=\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)

\(\Leftrightarrow\sqrt{\dfrac{1}{1+\dfrac{y}{4x}+\dfrac{y^2}{x^2}}}+\sqrt{\dfrac{1}{1+\dfrac{z}{4y}+\dfrac{z^2}{y^2}}}+\sqrt{\dfrac{1}{1+\dfrac{x}{4z}+\dfrac{x^2}{z^2}}}\le2\)

Đặt \(\left\{{}\begin{matrix}\dfrac{y}{x}=a\\\dfrac{z}{y}=b\\\dfrac{x}{z}=c\end{matrix}\right.\) thì bài toán thành

Chứng minh: \(A=\dfrac{1}{\sqrt{4a^2+a+4}}+\dfrac{1}{\sqrt{4b^2+b+4}}+\dfrac{1}{\sqrt{4c^2+c+4}}\le1\) với \(abc=1\)

Thử giải bài toán mới này xem sao bác.

3 tháng 10 2017

*C/m bài toán mới của HUngnguyen

Ta có BĐT phụ \(\dfrac{1}{\sqrt{4a^2+a+4}}\le\dfrac{a+1}{2\left(a^2+a+1\right)}\)

\(\Leftrightarrow\left(a+1\right)^2\left(4a^2+a+4\right)\ge4\left(a^2+a+1\right)^2\)

\(\Leftrightarrow a\left(a-1\right)^2\ge0\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{1}{\sqrt{4b^2+b+4}}\le\dfrac{b+1}{2\left(b^2+b+1\right)};\dfrac{1}{\sqrt{4c^2+c+4}}\le\dfrac{c+1}{2\left(c^2+c+1\right)}\)

CỘng theo vế 3 BĐT trên ta có;

\(VT\le1=VP\) * Chỗ này tự giải chi tiết ra nhé, giờ bận rồi*

28 tháng 5 2018

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c>0\end{matrix}\right.\)

\(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}+\dfrac{bc}{\sqrt{b^2+c^2+2a^2}}+\dfrac{ca}{\sqrt{c^2+a^2+2b^2}}\le\dfrac{1}{2}\)

Ta có:\(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}=\dfrac{2ab}{\sqrt{\left(1+1+2\right)\left(a^2+b^2+2c^2\right)}}\)

\(\le\dfrac{2ab}{a+b+2c}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{bc+ac}{a+b}\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)

Dấu "=" khi \(a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=\dfrac{1}{9}\)

20 tháng 6 2017

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\ge\) \(\dfrac{2}{\sqrt{xy}}\) (1)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\) (2)

\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\) (3)

Cộng (1);(2);(3) vế theo vế ta được:

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\) (đpcm)

20 tháng 6 2017

dâu''='' xảy ra khi x=y=z

4 tháng 4 2017

\(VT=\sqrt{\dfrac{yz}{x^2+xy+yz+xz}}+\sqrt{\dfrac{xy}{y^2+xy+yz+xz}}+\sqrt{\dfrac{xz}{z^2+xy+yz+xz}}\)

\(VT=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\\\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{y}{y+z}}{2}\\\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{z}{y+z}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{x+z}+\dfrac{x}{x+z}\right)}{2}\)

\(\Rightarrow VT\le\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=4\sqrt{42}\)

4 tháng 4 2017

Sửa đề:\(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{z^2+2016}}+\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{3}{2}\)

Giải

Ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{z^2+xy+xz+yz}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\sqrt{\dfrac{yz}{x^2+2016}}\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right);\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{z}{y+z}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(\Sigma\sqrt{\dfrac{xy}{z^2+2016}}\le\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=4\sqrt{42}\)