Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) . Dấu "=" xảy ra khi a = b
Được : \(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=2xy\\x+y=1\end{cases}}\) \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min \(P=4\Leftrightarrow x=y=\frac{1}{2}\)
\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)
\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)
\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
Bạn kia làm ra kết quả đúng nhưng cách làm thì tào lao nhưng vẫn ra ???
Áp dụng BĐT Cô-si ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)
Tương tự:\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\),\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)
Cộng vế với vế của 3 BĐT trên ta được:
\(P+\frac{x+y+z}{2}+\frac{\left(x+y+z\right)+3}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow P+\frac{3}{2}+\frac{6}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow P\ge\frac{3}{2}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2+x}=\frac{x}{2}=\frac{x+1}{4}\\\frac{1}{y^2+y}=\frac{y}{2}=\frac{y+1}{4}\\\frac{1}{z^2+z}=\frac{z}{2}=\frac{z+1}{4},x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy \(P_{min}=\frac{3}{2}\)khi \(x=y=z=1\)
Áp dụng bđt Bunhiacopski ta có
\(P\ge\frac{9}{x^2+y^2+z^2+x+y+z}\ge\frac{9}{2\left(x+y+z\right)}=\frac{9}{6}=\frac{3}{2}.\)
Dấu "=" xảy ra khi x=y=z=1
chịu but Merry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry Christmas
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
Áp dụng cosi
`1/x^2+1/y^2>=2/(xy)`
`=>1/2>=2/(xy)`
`=>xy>=4`
Aps dụng cosi
`=>x+y>=2\sqrt{xy}=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)
\(\Rightarrow xy\ge4\)
Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy min A = 4 khi $x=y=2$