Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
Đặt x - y = z suy ra x = z + y
Ta có x2 + 4y2 = 1
<=> (z + y)2 + 4y2 - 1 = 0
<=> z2 + 2zy + y2 + 4y2 - 1 = 0
<=> 5y2 + 2zy + z2 - 1 = 0
Đenta = (2z)2 - 4.5.(z2 - 1) = 4z2 - 20z2 + 20 = -16z2 + 20
Để phương trình có nghiệm thì đen-ta phải lớn hơn hoặc bằng 0
=> -16z2 + 20 >= 0
<=> 16z2 - 20 <= 0 (nhân 2 vế với -1 thì đổi chiều)
<=> 4z2 - 5 <= 0
<=> 4z2 <= 5
<=> z2 <= 5/4
<=> vz2 <= v(5/4)
<=> |z| <= v5/2
<=> |x-y| <= v5/2 (điều phải chứng minh)
(v là kí hiệu của dấu căn nhé :*)
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\) (áp dụng svacxo)
Áp dụng bđt phụ \(a^2+b^2+c^2\ge ab+bc+ca\)
=>\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2+y^2+z^2=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\sqrt{\frac{1}{3}}}\)
Cách 2:
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
Tương tự hai bđt còn lại , cộng theo vế:
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge x^2+y^2+z^2=1\)(đpcm)
Cách 3:
\(\frac{x^3}{y}+\frac{x^3}{y}+y^2\ge3\sqrt[3]{\frac{x^3}{y}.\frac{x^3}{y}.y^2}=3x^2\)
Hay \(\frac{2x^3}{y}\ge3x^2-y^2\)
Tương tự 2 BĐT còn lại rồi cộng theo vế rồi chia cho 2 thu được đpcm
Cách 4:
\(\frac{x^3}{y}+\frac{x^3}{y}+xy+xy\ge4\sqrt[4]{x^8}=4x^2\)
Hay \(\frac{2x^3}{y}\ge4x^2-2xy\). Tương tự hai BĐT còn lại và cộng theo vế rồi làm nốt:v
P/s: Lời giải trên dùng kỹ thuật ghép cặp, một kĩ thuật rất gây ức chế cho em vì nhiều khi nghĩ không ra cần ghép với số nào:v
Bài 1:
x3+y3=152=> (x+y)(x2-xy+y2)=152
Mà x2-xy+y2=19
=> 19(x+y)=152=> x+y=8
Ta cũng có x-y=2
=> x=5;y=3
Bài 2:
x2+4y2+z2=2x+12y-4z-14
=> x2+4y2+z2-2x-12y+4z+14=0
=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0
=> (x+1)2+(2y-3)2+(z+2)2=0
=> (x+1)2=(2y-3)2=(z+2)2=0
=> x=-1;y=3/2;z=-2
Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)
\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)
\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)