Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)\)
Mà ta có:
\(\left\{{}\begin{matrix}x^2-2x+3=\left(x-1\right)^2+2>0\\y^2+6y+12=\left(y+3\right)^2+3>0\end{matrix}\right.\)
\(\Rightarrow\left(x^2-2x+3\right)\left(y^2+6x+12\right)>0\)
Vậy P > 0
\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+\left(12x^2+24x+12\right)+\left(3y^2+18y+9\right)+15\)
\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+12\left(x-1\right)^2+3\left(y+3\right)^2+15\)
\(=3\left(x-1\right)^2+2\left(y+3\right)^2+15\)
Do đó \(P\ge15\)
\(\Rightarrow P>0\)
Suy ra P luôn dương
Ta có x2+y2+xy+3x+3y+2
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(xy+x+y\right)\)
\(=\left(x+1\right)^2+\left(y+1\right)^2+\left(x+1\right)\left(y+1\right)-1\)
\(=\left(x+1+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(\frac{y+1}{2}\right)^2-1\ge-1\)
Bài có nhầm ?