K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

(CĂN X^2+1 -X)(CĂN X^2+1+X)(CĂN Y^2+1+Y)=1

=>CĂN Y^2+1 +Y/CĂN X^2+1 +X=1

=>CĂN X^2+1-X=CĂN Y^2+1 +Y

=>X+Y=CAWNX^2+1-X-CĂN Y^2+1-Y

TƯƠNG TỰ X+Y= CĂN Y^2+1-Y-CĂN X^2+1 -X

VẬY X+Y=0

2 tháng 9 2019

cám ơn bạn nha lê duy mạnh

29 tháng 9 2018

\(\left(x+1\right)\left(y+1\right)=2\)

\(\Leftrightarrow x=\frac{1-y}{1+y}\)

\(P=\sqrt{x^2+y^2-\sqrt{2\left(x^2+1\right)\left(y^2+1\right)}+2}+xy\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-\sqrt{2\left(\left(\frac{1-y}{1+y}\right)^2+1\right)\left(y^2+1\right)}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-2.\frac{y^2+1}{y+1}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{y^2+1}{y+1}\right)^2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\frac{y^2+1}{y+1}+\left(\frac{1-y}{1+y}\right)y=1\) 

15 tháng 6 2016

Bài 1

Từ giả thiết, bình phương 2 vế, ta được:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)

\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)

\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)

\(=2014\)

\(\Rightarrow A=\sqrt{2014}.\)

Bài 2:

Đặt \(\sqrt{2015}=a>0\)

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)

Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)

\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)

\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)

Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)

Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

Bài 3

Áp dụng bất đẳng thức Côsi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)

Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)

15 tháng 6 2016

Em mới hoc lớp 7

7 tháng 9 2017

\(\sqrt{2000}\)=\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow2000=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

                  =\(x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

                 \(\Rightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000-1=1999\)

ma \(S^2=x^2\left(1+y^2\right)+y^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

           =\(x^2+x^2y^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

          =\(x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =\(1999\Rightarrow S=\sqrt{1999}\)

          

       

áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn

4 tháng 12 2015

cái này chỉ cần nhân liên hợp là ra

4 tháng 12 2015

Nhân biểu thức Liên hợp Quân ơi

10 tháng 8 2016

bài đó nhân liên hợp là ra

27 tháng 9 2017

Bạn tham khảo cách làm của bạn Thắng Nguyễn ở đây nhé

Câu hỏi của Băng Mikage - Toán lớp 9 - Học toán với OnlineMath