Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)(1)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy\)
Vì \(x^2+y^2\)và x+y là các số nguyên => 2xy là số nguyên
\(x^4+y^4=\left(x^2+y^2\right)-2x^2y^2\)
Vì \(x^4+y^4,x^2+y^2\)là các số nguyên => \(2x^2y^2\)là số nguyên
=> \(\frac{1}{2}\left(2xy\right)^2\)là số nguyên=> \(\left(2xy\right)^2⋮2\)mà 2 là số nguyên tố => 2xy chia hết cho 2=> xy là số nguyên (2)
Từ (1), (2) và x+y là số nguyên
=> x^3+y^3 cũng là số nguyên.
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)