K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Ta có: \(x^4;y^4;z^4\)chia cho 4 dư 0 hoặc dư 1.

Mà \(x^4+y^4+z^4⋮4\)

\(\Rightarrow x^4;y^4;z^4⋮4\)

\(\Rightarrow x;y;z⋮2\)

Đề bài sai. \(x;y;z⋮2\)mới đúng

12 tháng 11 2019

Đề đúng đó bn. Câu này trong đề thi hsg tỉnh toán 9 hải phòng 2011-2012 mà :) thay các giá trị x,y,z = 4k đều thỏa mãn đề mà

17 tháng 1 2017

tk mik nha ! mik đang bị âm điểm! ko ai trả lời mà!

31 tháng 8 2018

1)

Theo đề ta có: n không chia hết cho 2 và 5 (1)

Mà n^4 đồng dư với 0 và 1 trong phép chia cho 8 ; n^4 đồng dư với 0 và 1 trong phép chia cho 5 (2)

Từ (1)và(2) suy ra n^4 đồng dư với 1 trong phép chia cho 5 và 8. =>n^4-1 chia hết cho 5 và 8

Mà 5 và 8 nguyên tố cùng nhau

Suy ra n^4-1 chia hết cho 40

31 tháng 8 2018

2)

Có P= x^2+3xy+y^2

=(x+y)^2+xy <= 4 + (x+y)/4 <= 4 +1/2 = 7/2

14 tháng 1 2017

Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)

\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)

\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)

Thế vào P ta được

\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)

\(=x^4+2x^2-6x+2014\)

\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

10 tháng 12 2017

Ta có: √x+1+√y−1≤√2(x+y)

⇔√2(x−y)2+10x−6y+8≤√2(x+y)

⇔2(x−y)+10x−6y+8≤2(x+y)

⇔2(x−y)2+8(x−y)+8≤0

⇔2(x−y+2)2≤0

Dấu = xảy ra khi {

x+1=y−1
x−y+2=0

⇔y=x+2

Thế vào P ta được

P=x4+(x+2)2−5x−5(x+2)+2020

=x4+2x2−6x+2014

=(x2−1)2+3(x−1)2+2010≥2010

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3