Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)
Áp dụng BĐT cô si ,ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)
Vậy ta được đpcm
ta có:
\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)
Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha
a) Ta có: \(2x^2+3xy+2y^2\)
\(=2\left(x^2+\dfrac{3}{2}xy+y^2\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}y+\dfrac{9}{16}y^2+\dfrac{7}{16}y^2\right)\)
\(=2\left(x+\dfrac{3}{4}y\right)^2+\dfrac{7}{8}y^2\ge0\forall x,y\)(đpcm)
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)
\(\Leftrightarrow1+\frac{b}{a}+\frac{a}{b}+1\ge4\)
\(\Leftrightarrow\frac{b^2+a^2}{ab}\ge2\)
Vì a > 0 và b > 0 \(\Rightarrow ab>0\)
Vậy \(\frac{b^2+a^2}{ab}\ge2\Leftrightarrow b^2+a^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vậy bất đẳng thức được chứng minh.
bài này có nhiều hướng đi lắm =))
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)
1. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)
=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge\frac{4}{a+b}\cdot\left(a+b\right)=4\). Dấu "=" xảy ra <=> a=b
2. Áp dụng bất đẳng thức AM-GM ta có : \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\); \(a+b\ge2\sqrt{ab}\)
=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge2\sqrt{\frac{1}{ab}}\cdot2\sqrt{ab}=4\). Dấu "=" xảy ra <=> a=b
3. \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=1+\frac{b}{a}+\frac{a}{b}+1\ge2+2\sqrt{\frac{b}{a}\cdot\frac{a}{b}}=2+2=4\)(AM-GM)
Dấu "=" xảy ra <=> a=b
Áp dụng bất đẳng thức cho 2 số dương 2x và 8y ta có:
2x+8y\(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16xy}\)
Mà x.y=4 => 2x+8y \(\ge\)2\(\sqrt{2x.8y}\)=2\(\sqrt{16.4}\)
=> 2.8=16
Vậy 2x+8y\(\ge\)16