Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
Giải:
\(A=\sqrt{x^2+(y+1)^2}+\sqrt{x^2+(y-3)^2}\)
\(\Leftrightarrow A=\sqrt{x^2+(2x-1)^2}+\sqrt{x^2+(2x-5)^2}\)
ÁP dụng BĐT Cauchy-Schwarz:
\([x^2+(2x-1)^2](2^2+1)\geq (2x+2x-1)^2\Rightarrow \sqrt{x^2+(2x-1)^2}\geq \frac{|4x-1|}{\sqrt{5}}\)
\([x^2+(2x-5)^2](2^2+11^2)\geq (2x+55-22x)^2\Rightarrow \sqrt{x^2+(2x-5)^2}\geq \frac{|-20x+55|}{5\sqrt{5}}=\frac{|-4x+11|}{\sqrt{5}}\)
\(\Rightarrow A\geq \frac{|4x-1|+|-4x+11|}{\sqrt{5}}\geq \frac{|4x-1-4x+11|}{\sqrt{5}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)
Vậy \(A_{\min}=2\sqrt{5}\Leftrightarrow x=\frac{2}{3}\)
thiếu y=-2/3 nhé cái này mk làm xong lâu r`, dù sao cx cảm ơn
Câu 1:
\(y=2\cdot\left(\dfrac{1}{2}sinx-cos\cdot\dfrac{\sqrt{3}}{2}\right)=2\cdot sin\left(x-\dfrac{pi}{3}\right)\)
=>-2<=y<=2
y=2 khi x-pi/3=pi/2+k2pi
=>x=5/6pi+k2pi
Lời giải:
Từ điều kiện đb \(\ln x+\ln y\geq \ln (x^2+y)\Leftrightarrow \ln (xy)\geq \ln (x^2+y)\)
\(\Leftrightarrow xy\geq x^2+y\Leftrightarrow y(x-1)\geq x^2\)
\(\bullet\)Nếu \(x\geq 1\Rightarrow y\geq \frac{x^2}{x-1}\)
Khi đó \(P=x+y\geq x+\frac{x^2}{x-1}=2x+1+\frac{1}{x-1}=2(x-1)+\frac{1}{x-1}+3\)
Áp dụng định lý AM-GM:
\(P\geq 2\sqrt{2(x-1).\frac{1}{x-1}}+3=2\sqrt{2}+3\) hay \(P_{\min}=2\sqrt{2}+3\)
\(\bullet \)Nếu \(x<1\Rightarrow \ln x<0\) kéo theo \(\ln x+\ln y<\ln y\)
Mà \(\ln(x^2+y)\geq \ln (0+y)=\ln y\) nên \(\ln x+\ln y<\ln (x^2+y)\) (không thỏa mãn đkđb) (loại)
Vậy \(P_{\min}=2\sqrt{2}+3\)
Đáp án B