K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

sai đề k

8 tháng 8 2016

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b

Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)

Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)

Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)

Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)

8 tháng 8 2016

\(M\ge\frac{\left(1+1\right)^2}{\sqrt{1+x^2}+\sqrt{1+y^2}}\ge\frac{4}{\frac{1+x^2+5+1+y^2+5}{2\sqrt{5}}}=\frac{2\sqrt{5}}{5}\)
dấu = xảy ra khi x=y và x^2+y^2=8=> x=y=2

NV
30 tháng 12 2021

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

31 tháng 12 2021

Anh ơi! Dấu bằng xảy ra là x+y+z =2 và cái nào nữa ạ anh

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

8 tháng 12 2018

1) Áp dụng bđt Cauchy-Schwarz:

\(A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^3+x^2y+xy^2+y^3+y^2z+yz^2+z^3+z^2x+x^2z}\)

\(=\dfrac{\left(x^2+y^2+z^2\right)^2}{x\left(x^2+y^2+z^2\right)+y\left(x^2+y^2+z^2\right)+z\left(x^2+y^2+z^2\right)}=\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge\dfrac{\dfrac{\left(x+y+z\right)^2}{3}}{x+y+z}=\dfrac{x+y+z}{3}=\dfrac{2012}{3}\)

\("="\Leftrightarrow x=y=z=\dfrac{2012}{3}\)

2)

Áp dụng bđt AM-GM:

\(\dfrac{x^3}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)

Chứng minh tương tự và cộng theo vế:

\(S\ge x-\dfrac{y}{2}+y-\dfrac{z}{2}+z-\dfrac{x}{2}=\dfrac{2015}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{2015}{3}\)

8 tháng 12 2018

Em cảm ơn rất nhiều ạ

12 tháng 3 2021

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).

Đẳng thức xảy ra khi x = 1; y = 2.

NV
12 tháng 3 2021

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

14 tháng 3 2021

Ta có:

\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)

Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)

14 tháng 3 2021

\(M=\dfrac{2x+y}{xy}\)