Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))
sol nhẹ vài bài
\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)
\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\)
Khi đó \(z-y⋮x;z+y+3⋮x\)
Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\)
Trường hợp này loại
Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)
Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)
\(\Rightarrow z< x+y\)
Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)
Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)
Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)
\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z
\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)
\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)
Vậy.............
Bài 1 : Giải :
a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)
\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)
\(\Rightarrow x+1=x\sqrt[3]{2}\)
\(\Rightarrow\left(x+1\right)^3=2x^3\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)
\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)
\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)
\(=2020\)
P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))
\(A=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}\)
Theo BĐT Cô si ta có :
\(A=\frac{1}{1-3xy}+\frac{3}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{2}\)
Vậy BĐT đã được chứng minh .
2. Áp dụng bđt \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) :
\(B=\frac{x}{x+x+y+z}+\frac{y}{x+y+y+z}+\frac{z}{x+y+z+z}\) \(=x\cdot\frac{1}{\left(x+y\right)+\left(x+z\right)}+y\cdot\frac{1}{\left(x+y\right)+\left(y+z\right)}+z\cdot\frac{1}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\frac{1}{4}\cdot x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{4}y\left(\frac{1}{x+y}+\frac{1}{y+z}\right)+\frac{1}{4}z\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\Rightarrow B\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)
Dấu "=" \(\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
Em chỉ biết chữa lại thôi chứ không biết tìm lỗi sai =_=. Anh/chị thông cảm ạ.
Lời giải:
Lời giải trên chưa chính xác.
*Chữa lại:
\(M=\left(\frac{4}{x}+9x\right)+y-9x\ge12+y-9x\)
\(\ge12+y-9\left(1-\frac{1}{y}\right)=12+y-9+\frac{9}{y}\)
\(=3+\left(y+\frac{9}{y}\right)\ge3+2\sqrt{y.\frac{9}{y}}=9\)
Dấu "=" xảy ra khi \(x=\frac{2}{3};y=3\)
Vậy ....