Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1/ Ta có: 2n + 1 = a2 ; 3n + 1 = b2
=> 4(2n + 1) - (3n + 1) = 4a2 - b2
<=> 5n + 3 = (2a - b)(2a + b)
Ta thấy 2a + b > 1
Giờ chỉ việc chứng minh
2a - b = 1 (vô nghiệm là có thể kết luận rồi nhé )
\(a)\)\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) ( đề nhầm đúng ko bn )
\(M=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(M=\left(x-y\right)^3-\left(x-y\right)^2\)
\(M=7^3-7^2\)
\(M=294\)
Chúc bạn học tốt ~
1. Dạng này có giải rồi bn. Dùng hđt A3 +B3 = (A+B)3 -3AB(A+B) : 2x - 8 + 4x +13 = 4x +2x +5
2. Pt <=> x2 +y2 +1 -2xy -2x+2y +y2 +4y +4 =0 <=> (x-y-1)2 + (y+2)2 =0 <=> x-y-1=0 và y+2 =0 <=>x = -1 và y = -2
bài 2: Ta có: x2 - 2xy + y2 + y2 -2x + 6y + 5 =0
hay (x - y)2 + y2 -2x + 6y + 5 =0
nên (x - y)2 - 2(x-y) + y2 + 4y + 5 =0
suy ra: (x - y)2 - 2(x-y) + 1 + y2 + 4y + 4=0
vậy ta được: (x-y-1)2 + (y+2)2 =0
mà (x-y-1)2 >= 0, (y+2)2 >=0
Vậy để pt trên có giá trị bằng 0 thì y=-2; x-y-1=0
từ đó suy ra x=-1; y=-2
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)