K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

Q=2

4 tháng 3 2016

câu a) chỉ cần thay đại X và Y làm sao cho thõa rồi thay là được. Như trường hợp này ta có thể thay X=2 và

Y=\(\sqrt{2}\)

thay vào ta được A= - 8

câu b) Vì A(x) chia hết cho B(x) và C(x) nên A(x) chia hết cho B(x).C(x)=(x-3)(2x+1)=\(2x^2-5x-3\)

a=-5 và b=-3

\(\Rightarrow\)thay vào ta tính dược 3a-2b = 3.(-5)-2.(-3)= -15+6 = -9

31 tháng 3 2017

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

31 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

11 tháng 12 2016

Có: \(x^3-y^3=-3xy\left(y-x\right)\)

\(\Leftrightarrow x^3-y^3=-3xy^2+3x^2y\)

\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3=0\)

\(\Leftrightarrow\left(x-y\right)^3=0\)

\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Khi đó bt A trở thành:

\(A=\left(2x-y\right)\left(y-2x\right)\left(y-y\right)^2=\left(2x-y\right)\left(y-2x\right)\cdot0=0\)

11 tháng 12 2016

giup minh voi cac ban oi !!!!!!!!!!!!!!!!1

13 tháng 11 2015

1.để Ak xđịnh thì x2+x-12=0

                   <=>x2+4x-3x-12=0

                   <=>x(x+4)-3(x+4)=0

                   <=>(x+4)(x-3)=0 <=> x=-4 hoặc x=3

Vậy để A k xđịnh <=> x=-4 hoặc x=3

**** cho mìk vs nha bạn