K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

dùng buniacosky với x+3y<10 là dc

5 tháng 4 2016

Giải ra

23 tháng 3 2019

Ta có:\(\left(1+9\right)\left(x+3y\right)\ge\left(\sqrt{x}+3\sqrt{3y}\right)^2\)

\(\Rightarrow\sqrt{x}+3\sqrt{3y}\le10\)

Đặt \(P=\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\)

\(P=\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{27}{\sqrt{3y}}+3\sqrt{3y}-\left(\sqrt{x}+3\sqrt{3y}\right)\)

\(P\ge2+18-10=10\)

"="<=>x=1;y=3

19 tháng 6 2015

+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)

\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)

\(\Rightarrow xy^9\le3^9\)

+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)

\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)

Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)

x + 25 = 64

x         = 64 - 25

x         = 39

Vậy x = 39

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Áp dụng BĐT SVac-xơ:

\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}\geq \frac{(1+3+3+3)^2}{\sqrt{x}+3\sqrt{3y}}\)

\(\Leftrightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x+3y)(1+9)\geq (\sqrt{x}+3\sqrt{3y})^2\)

\(\Rightarrow \sqrt{x}+3\sqrt{3y}\leq \sqrt{10(x+3y)}\leq 10(2)\) do \(x+3y\leq 10\)

Từ \((1);(2)\Rightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}\geq \frac{100}{10}=10\) (đpcm)

Dấu bằng xảy ra khi \(\frac{\sqrt{x}}{1}=\frac{\sqrt{3y}}{3}; x+3y=10\Rightarrow x=1;y=3\)

29 tháng 7 2019

Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)

=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)

=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...