Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0\le x,y,z\le1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\)
Tương tự:
\(yz+1\ge y+z;zx+1\ge z+x\)
Khi đó
\(LHS\le\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\le\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\)
Không chắc nha !
Yêu cầu chứng minh \(B\ge1\) là đáp án đúng cho bài toán này.
Không giải!
Đề bài thiếu điều kiện rồi :")))
thêm điều kiện đi rồi giải cho
ta có 3x + yz = x2 + xy + yz + zx = (x+y)(x+z)
do đó:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{\left(\sqrt{x^2+xy+yz+zx}+x\right)\left(\sqrt{x^2+xy+yz+zx}-x\right)}\)
= \(\frac{x\left(\sqrt{\left(x+y\right)\left(x+z\right)}-x\right)}{xy+yz+zx}\le\frac{x\left(\frac{x+y+x+z}{2}-x\right)}{xy+yz+zx}\)\(\le\frac{x\left(y+z\right)}{2\left(xy+yz+zx\right)}\)
tương tự với 2 số hạng còn lại nên ta được: P\(\le\)1. đpcm
Ta viết lại bất đẳng thức cần chứng minh thành: \(\frac{1}{\sqrt{xy}-4}+\frac{1}{\sqrt{yz}-4}+\frac{1}{\sqrt{zx}-4}\ge-1\)(*)
Theo BĐT Cauchy, ta có: \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z\)
Mà ta có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3\)nên \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
Theo BĐT Bunyakovsky dạng phân thức: \(\frac{1}{\sqrt{xy}-4}+\frac{1}{\sqrt{yz}-4}+\frac{1}{\sqrt{zx}-4}\)\(\ge\frac{9}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}-12}\ge\frac{9}{3-12}=-1\)
Suy ra (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1
Ine CTV
dễ thấy \(x,y,z< \sqrt{3}\)\(\Rightarrow\)\(\sqrt{xy}-4< 0\); ...
cauchy-schwarz chỉ dùng cho mẫu dương nha em, bài này lúc trước anh cũng lam sai, noi trước để đừng lục lại :D
Áp dụng B.C.S ta có:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự cộng lại ta có dpcm.
Dấu = khi x=y=z=1
Các bất đẳng thức đúng : \(ab\le\frac{\left(a+b\right)^2}{4};\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng ta được :
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\)
Ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
\(\frac{3}{2xy}\ge\frac{3}{2.\frac{\left(x+y\right)^2}{4}}=\frac{3}{2.\frac{1}{4}}=6\)
\(\Rightarrow A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\ge4+6=10\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(A_{min}=10\) tại \(x=y=\frac{1}{2}\)
Áp dụng bất đẳng thức Cô - si, ta có :
\(VT=\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x^2+xy}+4\left(x^2+xy\right)+\frac{1}{y^2+xy}+4\left(y^2+xy\right)-4\left(x+y\right)^2\)
\(VT\ge2\sqrt{\frac{1}{x^2+xy}.4\left(x^2+xy\right)}+2\sqrt{\frac{1}{y^2+xy}+4\left(y^2+xy\right)}-4=4\)
=> đpcm