Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
\(\Leftrightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\ge0\)
\(\Leftrightarrow\frac{4x^4y^4+x^4\left(x^2+y^2\right)^2+y^4\left(x^2+y^2\right)^2-3x^2y^2\left(x^2+y^2\right)^2}{x^2y^2\left(x^2+y^2\right)^2}\)
\(\Leftrightarrow4x^4y^4+x^4\left(x^4+2x^2y^2+y^4\right)+y^4\left(x^4+2x^2y^2+y^4\right)-3x^2y^2\left(x^4+2x^2y^2+y^4\right)\ge0\)
\(\Leftrightarrow4x^4y^4+x^8+2x^6y^2+x^4y^4+2x^2y^6+y^8-3x^6y^2-6x^4y^4-3x^2y^6\ge0\)
\(\Leftrightarrow x^8+y^8-x^6y^2-x^2y^6\ge0\)
\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\) ( luôn đúng )
\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right) \Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)(1)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\), (1) trở thành \(t^2-3t+2\ge0\)(2)
(2) đúng khi \(t\le1\)hoặc \(t\ge2\), chú ý rằng theo bất đẳng thức AM - GM, ta có:
\(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\)với x,y > 0
Do đó (2) đúng, suy ra (1) đúng ( đpcm ).
Tham khảo ở đây nha bạn!
http://olm.vn/hoi-dap/question/520851.html
\(BĐT\Leftrightarrow\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\) (Luôn đúng vì \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\))
Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x∈Z⇒x∈{−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
\(\Leftrightarrow\)\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\ge0\)
\(\Leftrightarrow\frac{4x^4y^4+x^4\left(x^2+y^2\right)^2+y^4\left(x^2+y^2\right)^2-3x^2y^2\left(x^2+y^2\right)^2}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)
\(\Leftrightarrow4x^4y^4+x^4\left(x^4+2x^2y^2+y^4\right)+y^4\left(x^4++2x^2y^2+y^4\right)-3x^2y^2\left(x^4+2x^2y^2+y^4\right)\ge0\)
\(\Leftrightarrow4x^4y^4+x^8+2x^6y^2+x^4y^4+x^4y^4+2x^2y^6+y^8-3x^6y^2-6x^4y^4-3x^2y^6\ge0\)
\(\Leftrightarrow x^8+y^8-x^6y^2-x^2y^6\ge0\)
\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\)( luôn đúng )
=> \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
Dấu " = " xảy ra <=> x=y