K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta có: \(xy\le\dfrac{1}{4}\left(x+y\right)^2=\dfrac{1}{4}\times1^2=\dfrac{1}{4}\)

\(\Rightarrow x^2y^2\le\dfrac{1}{16}\)

\(A=\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)\)

\(=x^2y^2+1+1+\dfrac{1}{x^2y^2}\)

\(\ge\dfrac{1}{16}+1+1+\dfrac{1}{\dfrac{1}{16}}=\dfrac{289}{16}\)

Dấu "=" xảy ra <=> x = y = 0,5

Vậy Min A = 18,0625 <=> x = y = 0,5

10 tháng 5 2017

mình khẳng định cách làm này chắc chắn đúng

A=(x2 +1/y2)(y2 +1/x2)=(xy)2+\(\dfrac{1}{xy^2}\)+2

ta có x+y=1 mà x+y \(\ge\)2\(\sqrt{xy}\)nên 1 \(\ge\)2\(\sqrt{xy}\)

nên 1/2 \(\ge\)\(\sqrt{xy}\) =>1/4\(\ge\)xy=>\(\dfrac{1}{16}\)\(\ge\)(xy)2

sau đó ta sử dụng phương pháp chọn điểm rơi để thêm bớt cho phù hợp.

ta thấy gtnn xảy ra <=>x=y=1/2 hay (xy)2=1/16

để bảo toàn cho giá trị nhỏ nhất xảy ra với điều kiện đè bài đã cho là x+y=1 thì ta đặt hằng số \(\alpha\)sao cho:

đặt \(\dfrac{\alpha}{xy^2}\)=xy2

cho xy2=\(\dfrac{1}{16}\)thì\(\alpha\)=\(\dfrac{1}{256}\)

ta có lời giải A=(\(\dfrac{1}{xy^2}\)-\(\dfrac{\dfrac{1}{256}}{xy^2}\))+(\(\dfrac{\dfrac{1}{256}}{xy^2}\)+xy2)+2

áp dụng bất đẳng thức cosy a2+b2\(\ge\)2ab ta có

\(\dfrac{\dfrac{1}{256}}{xy^2}\)+xy2\(\ge\)2\(\dfrac{\dfrac{1}{16}}{xy}\).xy=\(\dfrac{1}{8}\)

ta đã chứng minh \(\dfrac{1}{16}\)\(\ge\)xy2 nên ta có

\(\dfrac{1}{xy^2}\)-\(\dfrac{\dfrac{1}{256}}{xy^2}\)=\(\dfrac{\dfrac{255}{256}}{xy2}\)\(\ge\)\(\dfrac{\dfrac{255}{256}}{\dfrac{1}{16}}\)=\(\dfrac{255}{16}\)

nên A\(\ge\)\(\dfrac{1}{8}\)+\(\dfrac{255}{16}\)+2=\(\dfrac{289}{16}\)

dấu = xảy ra \(\Leftrightarrow\)x=y=\(\dfrac{1}{2}\)

vậy min A=\(\dfrac{289}{16}\)tại x=y=\(\dfrac{1}{2}\)

11 tháng 3 2018

\(A=\left(\dfrac{x+1}{y}\right)^2+\left(\dfrac{y+1}{x}\right)^2\)

\(A=\left(\dfrac{x+x+y}{y}\right)^2+\left(\dfrac{y+x+y}{x}\right)^2\)

\(A=\left(\dfrac{2x}{y}+1\right)^2+\left(\dfrac{2y}{x}+1\right)^2\)

\(A=\dfrac{4x^2}{y^2}+\dfrac{4x}{y}+1+\dfrac{4y^2}{x^2}+\dfrac{4y}{x}+1\)

\(A\ge8+8+2=18\)

\(\Rightarrow MINA=18\Leftrightarrow x=y=\dfrac{1}{2}\)

11 tháng 3 2018

Akai Hamura

15 tháng 4 2017

. P= x^2 +1/ x^2+ 2 +y^2+ 1/y^2 +2 (*) áp dụng bđt cosi cho các số dương x^2; y^2 và 1/x^2 và 1/y^2 được x^2+y^2 >= 2xy (1) và 1/X^2 +1/y^2 >=2/xy (2) thay vào (*) P >= 4+2xy+2/(xy) (**) Do x,y>0 áp dụng bđt cosi cho 2 số dương 2xy và 2/ (xy) ta được 2xy+2/(xy)>=2 căn (2xy . 2/(xy))=2 (3) thay trở lại (**) được P>= 4+2=6 Dấu bằng sảy ra khi dấu bằng ở (1)(2)(3) cùng đồng thời sảy ra tức là (1) x=y; (2) 1/x=1/y ;(3) xy=1/(xy) => x=y Vậy GTNN của biểu thức là 6 sảy ra khi x=y

16 tháng 4 2017

sai chỗ \(2xy+\dfrac{2}{xy}\ge2\sqrt[]{\dfrac{2}{xy}.2xy}=4\)

\(\Rightarrow A\ge4+4=8\)

10 tháng 5 2019

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2019

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18

18 tháng 6 2017

\(A=\left(1-\dfrac{1}{x^2}\right)\left(1-\dfrac{1}{y^2}\right)=1+\dfrac{1}{x^2y^2}-\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương, ta có:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\) (1)

\(x+y\ge2\sqrt{xy}\) (2)

TỪ (2) \(\Rightarrow\) \(\dfrac{1}{x^2y^2}\ge\dfrac{16}{\left(x+y\right)^4}\)\(\dfrac{2}{xy}\ge\dfrac{8}{\left(x+y\right)^2}\)

Mặt khác, theo đề \(x+y\le1\)

=> \(\dfrac{1}{x+y}\ge1\)

=> A \(\ge1+\dfrac{16}{\left(x+y\right)^4}+\dfrac{2}{xy}\) \(\ge1+\dfrac{16}{\left(x+y\right)^4}-\dfrac{8}{\left(x+y\right)^2}\)

\(=1+16-8=9\)

Dấu ''='' xảy ra khi x = y = 0,5

18 tháng 6 2017

Mình đánh nhầm, dòng 2 từ dưới lên phải là \(-\dfrac{2}{xy}\) nhá ! :))

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)