K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)

2 tháng 12 2016

A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)

Áp dụng bđt cauchy là ra bài

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

5 tháng 7 2020

Ta có: \(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{2xy}+8xy\right)-4xy\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+2\sqrt{\frac{1}{2xy}.8xy}-\left(x+y\right)^2=4+4-1=7\)

Dấu "=" xảy ra khi và chỉ khi x = y = 0,5.

16 tháng 11 2015

\(A=\frac{1}{x^2+y^2}+\frac{2}{2xy}\ge\frac{\left(1+\sqrt{2}\right)^2}{x^2+y^2+2xy}=\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y\right)^2}=3+2\sqrt{2}\)

Amin =\(3+2\sqrt{2}\) khi  x =y =1/2

2 tháng 5 2022

undefined

17 tháng 5 2016

\(GT\Leftrightarrow x^2+y^2+1+2xy-2x-2y=xy\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2=1-xy\rightarrow xy\le1\)

\(\rightarrow\left(x+y-1\right)^2\le1\Leftrightarrow\left(x+y-2\right)\left(x+y\right)\le0\rightarrow x+y\le2\)

\(\text{Ta có:}P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}=\frac{1}{2xy}+\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{\left(x+y\right)\sqrt{xy}}{\left(x+y\right)^2}\)

\(\ge\frac{1}{2xy}+\frac{4}{\left(x+y\right)^2}+\frac{2xy}{\left(x+y\right)^2}=\left(\frac{1}{2xy}+\frac{2xy}{\left(x+y\right)^2}\right)+\frac{4}{\left(x+y\right)^2}\)


\(\ge\frac{2}{x+y}+\frac{4}{\left(x+y\right)^2}\ge\frac{2}{2}+\frac{4}{2^2}=2\)

Vậy MinP=2 <=>x=y=1

17 tháng 5 2016

ra 1 nhé

22 tháng 5 2015

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\)

Do x,y\(\ge\)0

Ta có: \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*)

\(\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)(**)

 Áp dụng bất đẳng thức (*) ta có: \(A=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\ge\left(\frac{4}{x+y}\right)^2+4xy=\frac{16}{\left(x+y\right)^2}+4xy\)

  Áp dụng bất đẳng thức (**) ta có:\(A\ge\frac{16}{\left(x+y\right)^2}+4xy\ge2\sqrt{\frac{16}{\left(x+y\right)^2}.4xy}=2.\frac{8\sqrt{xy}}{x+y}\ge16\sqrt{xy}\)(do x+y\(\le\)1)

                 mình đang còn suy nghĩ đây là bản nháp bạn xem thử

5 tháng 7 2019

Như này nha bạn 

Akakakakaka,am,am

 ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi

5 tháng 7 2019

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

                                                      \(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

                                                        \(\ge4+2+5=11\)

"=" tại x = y = 1/2