Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\frac{ay+bx}{xy}=\frac{bz+cy}{yz}=\frac{cx+az}{zc}\) <=> \(\frac{a}{x}+\frac{b}{y}=\frac{b}{y}+\frac{c}{z}=\frac{c}{z}+\frac{a}{c}\)
<=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)=> \(x=ak\) ; \(y=bk\) ; \(z=ck\) (2)
Gọi giả thiết là (1) Thay 2 vào 1 ta đc : \(k=\frac{1}{2}\)
=> Kết hợp k=1/2 với 2 ta được: a=x/2 ; b=y/2 và c=z/2
bạn lầu trên ơi, a/x=b/y=c/x=k thì x=a/k chứ bạn đâu phải x=ak đâu.
\(x\left(\frac{1}{2}+\frac{1}{y}\right)=\frac{10}{y}+\frac{3}{2}\)
\(\Leftrightarrow x=\frac{\frac{10}{y}+\frac{3}{2}}{\frac{y+2}{2y}}\)
\(\Leftrightarrow x=\frac{20+3y}{y+2}\)
\(\Leftrightarrow x=\frac{3\left(y+2\right)+14}{y+2}\)
\(\Leftrightarrow x=3+\frac{14}{y+2}\)
Để x nguyên thì \(y\inƯ\left(14\right)\)
Tiếp tự làm nhé
đố vui
1 ơi + 2 ơi = bằng mấy ơi ?
đây là những câu đố vui sau những ngày học mệt nhọc
4 ơi??? hay 5 ơi, mjk hok bjk chịu thua nèk, pn ns đi Anh Nguyễn Lê Quan
Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)
=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)
Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)
Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2