Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)
\(\Rightarrow x^2+2xy+y^2=a^2\Rightarrow x^2+y^2=a^2-2xy\Rightarrow x^2+y^2=a^2-2b\)
Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)
\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)
Vậy P=26
\(\left\{{}\begin{matrix}x+y=-3\\xy=-28\end{matrix}\right.\)
Nên \(\left(x+y\right)^2=9\)
\(x^2+2xy+y^2=9\)
\(\Rightarrow x^2-56+y^2=9\)
\(\Rightarrow x^2+y^2=65\)(1)
Ta có:
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=-3\left(65+28\right)=-3.93=-279\)(2)
\(x^4+y^4=x^4+y^4+2\left(xy\right)^2-2\left(xy\right)^2\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2=65^2-18=4207\)
cảm ơn bạn nhiều