Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
Em nghĩ đề phải là x1^3 + x2^3 chứ :<
Để phương trình có 2 nghiệm : \(\Delta\ge0\)
hay \(25-4\left(3m-1\right)=25-12m+4=29-12m\ge0\)
\(\Leftrightarrow-12m\ge-29\Leftrightarrow m\le\frac{29}{12}\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-5\\x_1x_2=\frac{c}{a}=3m-1\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=25\Rightarrow x_1^2+x_2^2=25-2x_1x_2=25-6m+2=27-6m\)
Ta có : \(x_1^3+x_2^3+3x_1x_2=75\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)+3x_1x_2=75\)
\(\Leftrightarrow-5\left(27-6m-3m+1\right)+3\left(3m-1\right)=75\)
\(\Leftrightarrow-5\left(28-9m\right)+9m-3=75\)
\(\Leftrightarrow-140+45m+9m-3=75\Leftrightarrow m=\frac{109}{27}\)( ktm )
a)Để \(PT\) có 2 nghiệm phân biệt khi \(\Delta'=\left(m-1\right)^2-\left(3-m\right)\)
\(=m^2-2m+1-3+m=m^2-m-2=\left(m-2\right)\left(m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>2\end{cases}}\)
Do đó để \(PT\)có 2 nghiệm phân biệt trái dấu khi \(\hept{\begin{cases}m\notin\left[-1;2\right]\\3-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\notin\left[-1;2\right]\left(1\right)\\m>3\left(TM\left(1\right)\right)\end{cases}}\)
Vậy \(m>3\) thì \(PT\) có 2 nghiệm trái dấu
b) Theo \(vi-et\: \) ta có :
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-2\right)^2-2.\left(3-m\right)=4m^2-6m-2\)
Kết hợp với đề bài ta được : \(4m^2-6m-2\ge10\Leftrightarrow4m^2-6m-12\ge0\Leftrightarrow2m^2-3m-4\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le\frac{3-\sqrt{41}}{4}\\\frac{3+\sqrt{41}}{4}\le x\end{cases}}\)
a, \(x^2-2\left(m-1\right)x-3-m=0\left(a=1;b=-2m+2;c=-3-m\right)\)
Để phương trình có 2 nghiệm trái dấu thì \(ac< 0\)hay
\(-3-m< 0\Leftrightarrow m< -3\)
b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=-3-m\)(tđz)
Theo bài ra ta có : \(x_1^2+x_2^2\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
Thay tđz bên trên vào ta đc : \(\left(2m-2\right)^2-2\left(-3-m\right)\ge10\)
\(\Leftrightarrow4m^2-4+6+2m\ge10\)
\(\Leftrightarrow4m^2+2+2m\ge10\Leftrightarrow3m^2-8+2m\ge0\)
Áp dụng HĐT đáng quên ra luôn =((