Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(-2m\right)^2-4\left(m-7\right)\)
\(=4m^2-4m+28\)
\(=\left(2m-1\right)^2+27>=27\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(P=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{4m^2-4\left(m-7\right)}=\sqrt{\left(2m-1\right)^2+27}\ge3\sqrt{3}\)
Dấu '=' xảy ra khi m=1/2
\(x^2-2mx+m-1=0\left(1\right)\)
a. Với m = 2
\(\left(1\right)\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
b, Để phương trình có hai nghiệm trái dấu thì:
\(a.c< 0\Leftrightarrow m-1< 0\Leftrightarrow m< 1\)
c, Theo vi - ét ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-1\end{cases}}\)
\(P=\left(x_1-x_2\right)^2+x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2-3\left(m-1\right)\)
\(=4m^2-3m+3=4m^2-2.2.\frac{3}{4}m+\frac{9}{16}+\frac{39}{16}=\left(2m-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)
Dấu bằng xảy ra khi \(2m=\frac{3}{4}\Leftrightarrow m=\frac{3}{8}\)
Thấy số hơi lẻ, bạn xem lại có sai sót gì không.
1.
\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\)
Với \(\Delta'>0\forall m\)thì phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :
x1 + x2 = \(-\frac{-m}{1}=m\) ; x1x2 =\(\frac{2m-3}{1}=2m-3\)
Thay x1 + x2 = m; x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :
A = x12 + x22 + 2x1x2 - 2x1x2
A = ( x1 + x2 + 2x1x2 ) - 2x1x2
A = ( x1 + x2 )2 - 2x1x2
A = m2 - 2.( 2m - 3 )
A = m2 - 4m + 6
\(\Delta'=\left(-2\right)^2-1.6=-2< 0\)
Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất
Lời giải:
Điều kiện: \(\Delta'=m^2-(2m-1)\geq 0\Leftrightarrow (m-1)^2\geq 0\)
(luôn đúng với mọi số thực m)
Khi đó áp dụng hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-1\end{matrix}\right.\)
Ta có:
\(A=2(x_1^2+x_2^2)-5x_1x_2\)
\(=2[(x_1+x_2)^2-2x_1x_2]-5x_1x_2\)
\(=2(x_1+x_2)^2-9x_1x_2\)
\(=8m^2-9(2m-1)=8m^2-18m+9\)
\(=8\left(m-\frac{9}{8}\right)^2-\frac{9}{8}\)
Thấy rằng \((m-\frac{9}{8})^2\geq 0\forall m\in\mathbb{R}\Rightarrow A\geq \frac{-9}{8}\)
Vậy A đạt min khi \((m-\frac{9}{8})^2=0\Leftrightarrow m=\frac{9}{8}\) (thỏa mãn)
Vậy \(m=\frac{9}{8}\)
*,với m=-2 thì bạn thay vào pt rồi giải như thường nha
*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0
=> phương trình luôn có 2 nghiệm phân biệt
*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4
Ta có A=(x1+x2)2-2x1x2
Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11
dấu = xảy ra khi 2m+1=0=> m=-1/2
hệ thức vi ét và biệt thức denta để làm gì hả bạn ?
do` bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm ,
Ta có: \(x^2-2mx+m-7=0\)
Ta có: \(\Delta'=m^2-m+7>0\)
\(\Rightarrow\)Phương trình luôn có 2 nghiệm phân biệt
Theo vi - et thì (sao không tin ổng, ổng đáng tin cậy lắm đấy :D)
\(\hept{\begin{cases}x_1+x_2=2m\\x_1^2.x_2^2=m-7\end{cases}}\)
Theo đề bài ta có:
\(P=|x_1-x_2|\)
\(\Leftrightarrow P^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(2m-1\right)^2+27\ge27\)
\(\Rightarrow P\ge3\sqrt{3}\)
Dấu = xảy ra khi \(m=\frac{1}{2}\)
x2 - 2mx + m - 7 = 0
(a= 1; b=-2m; c=m-7)
<=> \(\Delta\)= b2-4ac
\(\Leftrightarrow\)\(\Delta\)= (-2m)2 -4\(\times\)1\(\times\)(m-7)
\(\Leftrightarrow\)\(\Delta\)= 4m2-4m+28
= 4m2-4m+28 >= 0
vậy pt có 2 ng với mọi m
Theo đl vi-et, t/c:
s=x1+x2=\(\frac{-b}{a}\)=-2m
p=x1\(\times\)x2=\(\frac{c}{a}\)= m + 7
x1 + x2 + x1 \(\times\)x2
= S + P
= -2m + m+7
= -m +7
min A = 0 khi
-m+7=0
\(\Rightarrow\)m=7