K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Ta có: \(x^2-2mx+m-7=0\)

Ta có: \(\Delta'=m^2-m+7>0\)

\(\Rightarrow\)Phương trình luôn có 2 nghiệm phân biệt

Theo vi - et thì (sao không tin ổng, ổng đáng tin cậy lắm đấy :D)

\(\hept{\begin{cases}x_1+x_2=2m\\x_1^2.x_2^2=m-7\end{cases}}\)

Theo đề bài ta có:

\(P=|x_1-x_2|\)

\(\Leftrightarrow P^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(2m-1\right)^2+27\ge27\)

\(\Rightarrow P\ge3\sqrt{3}\)

Dấu =  xảy ra khi \(m=\frac{1}{2}\)

24 tháng 2 2017

x2 - 2mx + m - 7 = 0

(a= 1; b=-2m; c=m-7)

<=> \(\Delta\)= b2-4ac

\(\Leftrightarrow\)\(\Delta\)= (-2m)2 -4\(\times\)1\(\times\)(m-7)

\(\Leftrightarrow\)\(\Delta\)= 4m2-4m+28

= 4m2-4m+28 >= 0

vậy pt có 2 ng với mọi m

Theo đl vi-et, t/c:

s=x1+x2=\(\frac{-b}{a}\)=-2m

p=x1\(\times\)x2=\(\frac{c}{a}\)= m + 7

x1 + x2 + x1 \(\times\)x2

= S + P

= -2m + m+7

= -m +7

min A = 0 khi

-m+7=0

\(\Rightarrow\)m=7

\(\text{Δ}=\left(-2m\right)^2-4\left(m-7\right)\)

\(=4m^2-4m+28\)

\(=\left(2m-1\right)^2+27>=27\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

\(P=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4m^2-4\left(m-7\right)}=\sqrt{\left(2m-1\right)^2+27}\ge3\sqrt{3}\)

Dấu '=' xảy ra khi m=1/2

21 tháng 5 2016

Hoa Sinh Thcs Gia Thuy

14 tháng 3 2019

\(x^2-2mx+m-1=0\left(1\right)\)

a. Với m = 2

\(\left(1\right)\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

b, Để phương trình có hai nghiệm trái dấu thì:

\(a.c< 0\Leftrightarrow m-1< 0\Leftrightarrow m< 1\)

c, Theo vi - ét ta có:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-1\end{cases}}\)

\(P=\left(x_1-x_2\right)^2+x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2-3\left(m-1\right)\)

\(=4m^2-3m+3=4m^2-2.2.\frac{3}{4}m+\frac{9}{16}+\frac{39}{16}=\left(2m-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Dấu bằng xảy ra khi \(2m=\frac{3}{4}\Leftrightarrow m=\frac{3}{8}\)

Thấy số hơi lẻ, bạn xem lại có sai sót gì không.

30 tháng 4 2019

1.

\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\) 

Với \(\Delta'>0\forall m\)thì  phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :

x1 + x2 = \(-\frac{-m}{1}=m\) ;       x1x2 =\(\frac{2m-3}{1}=2m-3\)

Thay x+ x2 = m;   x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :

A = x12 + x22 + 2x1x2 - 2x1x2 

A = ( x+ x2 + 2x1x2 ) - 2x1x2

A = ( x1 + x2 )2 - 2x1x2 

A = m2 - 2.( 2m - 3 )

A = m2 - 4m + 6

\(\Delta'=\left(-2\right)^2-1.6=-2< 0\) 

Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

Điều kiện: \(\Delta'=m^2-(2m-1)\geq 0\Leftrightarrow (m-1)^2\geq 0\)

(luôn đúng với mọi số thực m)

Khi đó áp dụng hệ thức Viete:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-1\end{matrix}\right.\)

Ta có:

\(A=2(x_1^2+x_2^2)-5x_1x_2\)

\(=2[(x_1+x_2)^2-2x_1x_2]-5x_1x_2\)

\(=2(x_1+x_2)^2-9x_1x_2\)

\(=8m^2-9(2m-1)=8m^2-18m+9\)

\(=8\left(m-\frac{9}{8}\right)^2-\frac{9}{8}\)

Thấy rằng \((m-\frac{9}{8})^2\geq 0\forall m\in\mathbb{R}\Rightarrow A\geq \frac{-9}{8}\)

Vậy A đạt min khi \((m-\frac{9}{8})^2=0\Leftrightarrow m=\frac{9}{8}\) (thỏa mãn)

Vậy \(m=\frac{9}{8}\)

13 tháng 4 2017

*,với m=-2 thì bạn thay vào pt rồi giải như thường nha

*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0

=> phương trình luôn có 2 nghiệm phân biệt

*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4

Ta có A=(x1+x2)2-2x1x2

Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11

dấu = xảy ra khi 2m+1=0=> m=-1/2

hệ thức vi ét và biệt thức denta để làm gì hả bạn ?

do`  bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm , 

25 tháng 7 2018

Mình ngu thiệt mà, giúp mình đi. Mình làm mà thấy kết quả kì kì. Cao nhân xin giúp đỡ