K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Bạn xem lại đề. Với $x_1=0,5$ và $x_2=0,6$ thì \((x_1+x_2)^2>4x_1x_2\) nhưng \(x_1^2+x_2^2< 2(x_1+x_2)\)

26 tháng 7 2016

a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.

NV
25 tháng 11 2019

\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)

\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)

b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)

\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)

\(=m^2-12m+95\)

\(=\left(7-m\right)\left(5-m\right)+60\)

Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)

\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)

NV
25 tháng 11 2019

\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)

14 tháng 2 2017

f(x)=ax^2+bx+c (1)

đề Khó hiểu: a.f(x)=a^2x^2+abx+ac<0 (2) phải cho x khoảng nào hay là đúng với mọi x: đúng với mọi x không phải rồi vì khi x lớn (2) lớn=> không thể <0 được

14 tháng 2 2016

    (x2-3x+2)(x2-9x+20)=4

=>(x-1)(x-2)(x-4)(x-5)=4

Đặt x-3=a , phương trình tương đương:

    (a+2)(a+1)(a-1)(a-2)=4

=>(a2-1)(a2-4)=4

=>a4-5a2=0

Tự giải nốt nhé!

NV
6 tháng 9 2020

a/ Bạn tự giải

b/ Pt có 2 nghiệm pb \(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)

Khi đó theo đl Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

\(x_1^2+x_2^2-5x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=9\)

\(\Leftrightarrow16-7m=9\)

\(\Leftrightarrow m=1\)

25 tháng 7 2018

ta có : \(\Delta'=\left(m-1\right)^2-\left(3m-3\right)=m^2-2m+1-3m+3\)

\(\Leftrightarrow\Delta'=m^2-5m+4\)

để phương trình có 2 nghiệm\(\Leftrightarrow\Delta'\ge0\Leftrightarrow m^2-5m+4\Leftrightarrow\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\)

áp dụng định lí vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=3m-3\end{matrix}\right.\)

ta có : \(x_1^2+x_2^2\ge10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2\left(m-1\right)\right)^2-2\left(3m-3\right)\ge10\)

\(\Leftrightarrow4m^2-8m+4-6m+6\ge10\)

\(\Leftrightarrow4m^2-14m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{7}{2}\\m\le0\end{matrix}\right.\) kết hợp với \(\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\m\le0\end{matrix}\right.\) vậy \(m\ge4\) hoặc \(m\le0\)