Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-16x^2+32=0\Leftrightarrow x^2=8+4\sqrt{2}\text{ hoặc }x^2=8-4\sqrt{2}\)
\(a=\sqrt{2+\sqrt{\frac{4+2\sqrt{3}}{2}}}-\sqrt{6-3\sqrt{\frac{4+2\sqrt{3}}{2}}}\)\(=\sqrt{2+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}}-\sqrt{6-3\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}}\)
\(=\sqrt{2+\frac{\sqrt{3}+1}{\sqrt{2}}}-\sqrt{6-3\frac{\sqrt{3}+1}{\sqrt{2}}}=\sqrt{\frac{4+\sqrt{6}+\sqrt{2}}{2}}-\sqrt{3}\sqrt{\frac{4-\sqrt{6}-\sqrt{2}}{2}}\)
\(a^2=\frac{4+\sqrt{6}+\sqrt{2}}{2}+3.\frac{4-\sqrt{6}-\sqrt{2}}{2}-2\sqrt{3}\sqrt{\frac{\left(4+\sqrt{6}+\sqrt{2}\right)\left(4-\sqrt{6}-\sqrt{2}\right)}{2.2}}\)
\(=8-\left(\sqrt{6}+\sqrt{2}\right)-2\sqrt{3}.\frac{1}{2}.\sqrt{4^2-\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=8-\sqrt{6}-\sqrt{2}-\sqrt{3}\sqrt{8-4\sqrt{3}}\)
\(=8-\sqrt{2}-\sqrt{6}-\sqrt{\left(3\sqrt{2}-\sqrt{6}\right)^2}\)
\(=8-\sqrt{2}-\sqrt{6}-\left(3\sqrt{2}-\sqrt{6}\right)\)
\(=8-4\sqrt{2}\)
\(\Rightarrow a\text{ là nghiệm phương trình }x^4-16x^2+32=0\)
\(x^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
\(x^2=8-2\sqrt{2+\sqrt{3}}-2.\sqrt{3.\left(2+\sqrt{2+\sqrt{3}}\right).\left(2-\sqrt{2+\sqrt{3}}\right)}\)
\(x^2=8-2\sqrt{2+\sqrt{3}}-2.\sqrt{3.\left(4-\left(2+\sqrt{3}\right)\right)}=8-2\sqrt{2+\sqrt{3}}-2.\sqrt{3.\left(2-\sqrt{3}\right)}\)
\(x^2=8-\sqrt{2}\sqrt{4+2.\sqrt{3}}-\sqrt{6}.\sqrt{4-2.\sqrt{3}}=8-\sqrt{2}.\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{6}.\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(x^2=8-\sqrt{2}.\left(1+\sqrt{3}\right)-\sqrt{6}.\left(\sqrt{3}-1\right)=8-\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}=8-4\sqrt{2}\)
=> \(x^4=\left(x^2\right)^2=\left(8-4\sqrt{2}\right)^2=\left(4\sqrt{2}\right)^2.\left(\sqrt{2}-1\right)^2=32.\left(2-2\sqrt{2}+1\right)=96-64\sqrt{2}\)
=> \(x^4-16x^2+32=96-64\sqrt{2}-16.\left(8-4\sqrt{2}\right)+32=\left(96-96\right)-64\sqrt{2}+64\sqrt{2}=0\)
=> đpcm
<=> \(x^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\)
<=> \(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-6\sqrt{2+\sqrt{3}}+6\sqrt{2+\sqrt{3}}-3\left(2+\sqrt{3}\right)}\)
<=> \(x^2=8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{12-6-3\sqrt{3}}\)
<=> \(x^2=8-\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}-2\sqrt{6-3\sqrt{3}}\)
<=> \(x^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}.\sqrt{12-6\sqrt{3}}\)
<=> \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}.\sqrt{\left(3-\sqrt{3}\right)^2}\)
<=> \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\left(3-\sqrt{3}\right)\)
<=> \(x^2=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}\)
<=> \(x^2=8-4\sqrt{2}\)
<=> \(8-x^2=4\sqrt{2}\)
<=> \(\left(8-x^2\right)^2=\left(4\sqrt{2}\right)^2\)
<=> \(x^4-16x^2+64=32\)
<=> \(x^4-16x^2=-32\)
VẬY \(x^4-16x^2=-32\)
*** ĐÂY LÀ 1 BÀI TOÁN RẤT CỔ RỒI !!!!!!
\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)
\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(S_{min}=1\) khi \(a=b=c=1\)
GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)
Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)
Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
\(\Rightarrow P=1\)
Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)
\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)
TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ
TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)
\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)
Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)
Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ
7/
ĐKXĐ: \(-3\le x\le\frac{2}{3}\)
\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)
\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)
\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)
Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)
\(\Rightarrow4-\sqrt{3-2x}>0\)
\(\Rightarrow VT>0\)
Phương trình vô nghiệm (bạn coi lại đề)
5/
\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)
6/
ĐKXĐ: ....
\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)
Bài 1:
Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)
\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)
Đặt \(\sqrt{2+\sqrt{3}}=a\left(a>0\right)\)
Ta có x=\(\sqrt{2+a}-\sqrt{3\left(2-a\right)}\Rightarrow x^2=2+a+3\left(2-a\right)-2\sqrt{3\left(2+a\right)\left(2-a\right)}\)\(=8-2a-2\sqrt{3\left(4-a^2\right)}=8-2a-2\sqrt{3\left(4-2-\sqrt{3}\right)}=8-2a-\sqrt{6}\sqrt{4-2\sqrt{3}}\)
\(=8-2\sqrt{2+\sqrt{3}}-\sqrt{6}\left(\sqrt{3}-1\right)=8-\sqrt{2}\sqrt{4+2\sqrt{3}}-3\sqrt{2}+\sqrt{6}\)
\(=8-\sqrt{2}\left(\sqrt{3}+1\right)-3\sqrt{2}+\sqrt{6}=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}=8-4\sqrt{2}\)
\(\Rightarrow x^2-8=-4\sqrt{2}\Rightarrow\left(x^2-8\right)^2=32\Rightarrow x^4-16x^2+64=32\Rightarrow x^4-16x^2+32=0\left(ĐPCM\right)\)