Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
2.
Nếu 3 số x,y,z chia 3 khác số dư thì x+y+z chia hết cho 3
và (x-y),(y-z),(z-x) không chia hết cho 3
hay (x-y)(y-z)(z-x) không chia hết cho 3
=> (1) vô lí
+,Nếu trog 3 số 2 số có cùng số dư thì giả sử y,z cùng dư; x khác dư
khi đó x+y+z không c/h cho 3 ;
x-y và z-x không chia hết cho 3; y-z chia hết cho 3
=>(x-y).(y-z).(z-x) chia hết cho 3
=> (1) vô lí
Tóm lại 3 số x,y,z chia 3 cùng dư
khi đó (x-y),(y-z),(z-x) cùng chia hết cho 3
=> đpcm
Ta có \(y< z\)
=> \(x+y< x+z\)(1)
và \(x< y\)
=> \(x+z< y+z\)(2)
Từ (1) và (2) => \(x+y< x+z< y+z\)
Theo đề bài, ta có:\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}=\frac{2\left(x+y+z\right)}{9+12+13}=\frac{2.51}{34}=\frac{102}{34}=3\)(*)
=> \(x+y=27\)
và \(x+y=51-z\)
=> \(51-z=27\)
=> \(z=24\)
(*) => \(x+z=36\)
và \(x+z=51-y\)
=> \(51-y=36\)
=> \(y=15\)
Ta lại có: \(x=51-\left(y+z\right)\)
=> \(x=51-\left(15+24\right)\)
=> \(x=51-39=12\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x+y}{9}=\frac{y+z}{12}=\frac{z+x}{13}=\frac{2x+2y+2z}{9+12+13}=\frac{2\left(x+y+z\right)}{34}=\frac{2.51}{34}=\frac{102}{34}=3\)
=> x + y = 27; y + z = 36; z + x = 39
Ta có x + y + z = 51
=> x = 51 - (y + z) = 51 - 36 = 15
y = 51 - (z + x) = 51 - 39 = 12
z = 51 - (x + y) = 51 - 27 = 24
x=9;y=40